Теория умножения вероятностей. Независимость событий. Теорема умножения вероятностей. Учреждение образования «Белорусская государственная

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

Основные теоремы теории вероятности

Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

Запишем теорему сложения символически:

Р(А + В) = Р(А)+Р(В) ,

где Р - вероятность соответствующего события (событие указывается в скобках).

Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

Символически это записывается следующей формулой:

Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

Теоремы сложения и умножения вероятностей.
Зависимые и независимые события

Заголовок выглядит страшновато, но в действительности всё очень просто. На данном уроке мы познакомимся с теоремами сложения и умножения вероятностей событий, а также разберём типовые задачи, которые наряду с задачей на классическое определение вероятности обязательно встретятся или, что вероятнее, уже встретились на вашем пути. Для эффективного изучения материалов этой статьи необходимо знать и понимать базовые термины теории вероятностей и уметь выполнять простейшие арифметические действия. Как видите, требуется совсем немного, и поэтому жирный плюс в активе практически гарантирован. Но с другой стороны, вновь предостерегаю от поверхностного отношения к практическим примерам – тонкостей тоже хватает. В добрый путь:

Теорема сложения вероятностей несовместных событий : вероятность появления одного из двух несовместных событий или (без разницы какого) , равна сумме вероятностей этих событий:

Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх несовместных событий и :

Теорема-мечта =) Однако, и такая мечта подлежит доказательству, которое можно найти, например, в учебном пособии В.Е. Гмурмана.

Знакомимся с новыми, до сих пор не встречавшимися понятиями:

Зависимые и независимые события

Начнём с независимых событий. События являются независимыми , если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:

Теорема умножения вероятностей независимых событий : вероятность совместного появления независимых событий и равна произведению вероятностей этих событий:

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.

Найдём вероятность события (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий !) . Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события и независимы.

Аналогично:
– вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.

Заметьте, что события образуют полную группу и сумма их вероятностей равна единице: .

Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события независимы, то вероятность их совместного наступления равна: . Потренируемся на конкретных примерах:

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение : вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.

По классическому определению:
– соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением .

По теореме умножения вероятностей независимых событий:

– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.

Ответ : 0,504

После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:

Задача 4

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» ;-) Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.

Зависимые события . Событие называют зависимым , если его вероятность зависит от одного или бОльшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно до ближайшего магазина:

– завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным , так и невозможным . Таким образом, событие является зависимым .

Хлеба… и, как требовали римляне, зрелищ:

– на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие будет зависимым, поскольку его вероятность будет зависеть от того, какие билеты уже вытянули однокурсники.

Как определить зависимость/независимость событий?

Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.

Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:

Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий

Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:

Задача 5

Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:

а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.

Решение : вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.

Рассмотрим события:
– 1-й стрелок попадёт в мишень;
– 2-й стрелок попадёт в мишень.

По условию: .

Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:

а) Рассмотрим событие: – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:

1-й стрелок попадёт и 2-й промахнётся
или
1-й промахнётся и 2-й попадёт.

На языке алгебры событий этот факт запишется следующей формулой:

Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:

– вероятность того, что будет только одно попадание.

б) Рассмотрим событие: – хотя бы один из стрелков попадёт в мишень.

Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.

Способ первый : учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:

попадёт кто-то один (событие , состоящее в свою очередь из 2 несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой .

Таким образом:

По теореме умножения вероятностей независимых событий:
– вероятность того, что 1-й стрелок попадёт и 2-й стрелок попадёт.

По теореме сложения вероятностей несовместных событий:
– вероятность хотя бы одного попадания по мишени.

Способ второй : рассмотрим противоположное событие: – оба стрелка промахнутся.

По теореме умножения вероятностей независимых событий:

В результате:

Особое внимание обратите на второй способ – в общем случае он более рационален.

Кроме того, существует альтернативный, третий путь решения, основанный на умолчанной выше теореме сложения совместных событий.

! Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.

Способ третий : события совместны, а значит, их сумма выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий ). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:

Выполним проверку: события и (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
, что и требовалось проверить.

Ответ :

При основательном изучении теории вероятностей вам встретятся десятки задач милитаристского содержания, и, что характерно, после этого никого не захочется пристрелить – задачи почти подарочные. А почему бы не упростить ещё и шаблон? Cократим запись:

Решение : по условию: , – вероятность попадания соответствующих стрелков. Тогда вероятности их промаха:

а) По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только один стрелок попадёт в мишень.

б) По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.

Тогда: – вероятность того, что хотя бы один из стрелков попадёт в мишень.

Ответ :

На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается. В ряде случаев уместен гибридный стиль, когда прописными буквами удобно обозначить лишь некоторые события.

Похожие задачи для самостоятельного решения:

Задача 6

Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу , найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения) .

Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.

Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же! (что, собственно, уже продемонстрировано в примере с двумя монетами)

Задача 7

Вероятность поражения цели первым стрелком при одном выстреле равна 0,8. Вероятность того, что цель не поражена после выполнения первым и вторым стрелками по одному выстрелу равна 0,08. Какова вероятность поражения цели вторым стрелком при одном выстреле?

А это небольшая головоломка, которая оформлена коротким способом. Условие можно переформулировать более лаконично, но переделывать оригинал не буду – на практике приходится вникать и в более витиеватые измышления.

Знакомьтесь – он самый, который настрогал для вас немереное количество деталей =):

Задача 8

Рабочий обслуживает три станка. Вероятность того, что в течение смены первый станок потребует настройки, равна 0,3, второй – 0,75, третий – 0,4. Найти вероятность того, что в течение смены:

а) все станки потребуют настройки;
б) только один станок потребует настройки;
в) хотя бы один станок потребует настройки.

Решение : коль скоро в условии ничего не сказано о едином технологическом процессе, то работу каждого станка следует считать не зависимой от работы других станков.

По аналогии с Задачей №5, здесь можно ввести в рассмотрение события , состоящие в том, что соответствующие станки потребуют настройки в течение смены, записать вероятности , найти вероятности противоположных событий и т.д. Но с тремя объектами так оформлять задачу уже не очень хочется – получится долго и нудно. Поэтому здесь заметно выгоднее использовать «быстрый» стиль:

По условию: – вероятности того, что в течение смены соответствующие станки потребуют настойки. Тогда вероятности того, что они не потребуют внимания:

Один из читателей обнаружил тут прикольную опечатку, даже исправлять не буду =)

а) По теореме умножения вероятностей независимых событий:
– вероятность того, что в течение смены все три станка потребуют настройки.

б) Событие «В течение смены только один станок потребует настройки» состоит в трёх несовместных исходах:

1) 1-й станок потребует внимания и 2-й станок не потребует и 3-й станок не потребует
или :
2) 1-й станок не потребует внимания и 2-й станок потребует и 3-й станок не потребует
или :
3) 1-й станок не потребует внимания и 2-й станок не потребует и 3-й станок потребует .

По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:

– вероятность того, что в течение смены только один станок потребует настройки.

Думаю, сейчас вам должно быть понятно, откуда взялось выражение

в) Вычислим вероятность того, что станки не потребуют настройки, и затем – вероятность противоположного события:
– того, что хотя бы один станок потребует настройки.

Ответ :

Пункт «вэ» можно решить и через сумму , где – вероятность того, что в течение смены только два станка потребуют настройки. Это событие в свою очередь включает в себя 3 несовместных исхода, которые расписываются по аналогии с пунктом «бэ». Постарайтесь самостоятельно найти вероятность , чтобы проверить всю задачу с помощью равенства .

Задача 9

Из трех орудий произвели залп по цели. Вероятность попадания при одном выстреле только из первого орудия равна 0,7, из второго – 0,6, из третьего – 0,8. Найти вероятность того, что: 1) хотя бы один снаряд попадет в цель; 2) только два снаряда попадут в цель; 3) цель будет поражена не менее двух раз.

Решение и ответ в конце урока.

И снова о совпадениях: в том случае, если по условию два или даже все значения исходных вероятностей совпадают (например, 0,7; 0,7 и 0,7), то следует придерживаться точно такого же алгоритма решения.

В заключение статьи разберём ещё одну распространённую головоломку:

Задача 10

Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.

Решение : обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.

И таки распишем события:
– при 3 выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.

По условию , тогда вероятность противоположного события:

С другой стороны, по теореме умножения вероятностей независимых событий:

Таким образом:

– вероятность промаха при каждом выстреле.

В результате:
– вероятность попадания при каждом выстреле.

Ответ : 0,7

Просто и изящно.

В рассмотренной задаче можно поставить дополнительные вопросы о вероятности только одного попадания, только двух попаданий и вероятности трёх попаданий по мишени. Схема решения будет точно такой же, как и в двух предыдущих примерах:

Однако принципиальное содержательное отличие состоит в том, что здесь имеют место повторные независимые испытания , которые выполняются последовательно, независимо друг от друга и с одинаковой вероятностью исходов.

Глава 3.

Основные теоремы теории вероятностей и следствия из них

Теорема сложения вероятностей несовместных

Событий

Во второй главе было показано, как можно определить вероятность отдельного случайного события при выполнении определенных условий. Как известно, со случайными событиями можно проводить арифметические действия, главными из которых являются сложение и умножение событий. Теория вероятностей позволяет с помощью своих основных теорем найти вероятность суммы и произведения событий, т.е. определить либо вероятность появления хотя бы одного из рассматриваемых событий, либо вероятность одновременного появления этих событий.

К основным теоремам теории вероятностей относятся:

1. Теорема сложения вероятностей.

2. Теорема умножения вероятностей.

Рассмотрим теорему сложения вероятностей для частного случая. Предположим, что А и В несовместные события, причем будем считать, что вероятности этих событий известны, или могут быть найдены.

Теорема 3.1. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий, т.е.

Доказательство. Пусть n – общее число всех равновозможных элементарных событий испытания, в котором могут появиться события А или В . Обозначим через т А и т В число элементарных событий благоприятствующих событиям А и В соответственно. Так как события А и В несовместны, то сумме этих событий А + В благоприятствуют т А + т В элементарных событий. Поэтому .

Теорема доказана.

Следствие. Вероятность появления одного из нескольких попарно несовместных событий равна сумме вероятностей этих событий, т.е.

Доказательство нетрудно провести, используя метод математической индукции.

Пример 3.1. В ящике находятся 8 белых, 5 черных и 10 красных шаров. Случайным образом выбирается один шар. Какова вероятность того, что этот шар не белый?

Решение. Пусть событие А – выбор черного шара, В – выбор красного шара. Тогда событие С = А + В определяет выбор не белого шара (либо черного, либо красного).

По классической формуле . По теореме 3.1 окончательно получаем .■

Пример 3.2. На фирме имеется две вакантные должности, на занятие которых претендуют трое мужчин и пять женщин. Найти вероятность того, что среди взятых на работу людей будет хотя бы один мужчина, если отбор претендентов производится случайным образом.

Решение. Пусть событие С состоит в том, что среди взятых на работу людей будет хотя бы один мужчина. Очевидно, что событие С произойдет в том случае, когда произойдет одно из следующих двух несовместных событий: А – приняты на работу двое мужчин; В – приняты на работу одна женщина и один мужчина. Таким образом, С = А + В .

Найдем вероятности событий А и В , используя классическую формулу, получим

и .

События А и В – несовместны, следовательно, можно применить теорему 3.1. Получаем . ■

При решении примера 3.2 не было рассмотрено только одно из возможных событий, состоящее в том, что будут приняты на работу две женщины. Обозначим его буквой D и найдем его вероятность. Применяя классическую формулу, получим

.

Нетрудно понять, что события А , В и D образуют полную группу для испытания: выбор двух человек из восьми. Найдем сумму вероятностей этих событий: . Полученный результат можно представить в общем виде.

Теорема 3.2. Сумма вероятностей событий, образующих полную группу, равна 1.

Доказательство. Пусть события А 1 , А 2 , …, А n образуют полную группу для некоторого испытания. Тогда по определению в результате этого испытания одно из событий обязательно произойдет, т.е. сумма этих событий является достоверным событием. Вероятность достоверного события равна 1. Следовательно, справедливо равенство:

Напомним, что по определению полной группы она состоит из несовместных событий. Тогда по следствию из теоремы 3.1 получаем

Теорема доказана.

Следствие . Сумма вероятностей противоположных событий равна 1.

Доказательство непосредственно следует из того, что противоположные события образуют полную группу, следовательно, по теореме 3.2 имеет место формула

(3.3)

где А и Ā – противоположные события.

Следствие доказано.

При решение задач чаще применяется преобразованная формула (3.3), а именно

(3.4)

Пример 3.3. Из девяти кандидатов для выбора на три должности пятеро имеют диплом с отличием. Все имеют одинаковые шансы быть выбранными на эти должности. Определить вероятность того, что среди выбранных будет хотя бы один, имеющий диплом с отличием.

Решение. Пусть событие А означает, что среди выбранных кандидатов хотя бы один имеет диплом с отличием. Очевидно, что событие Ā противоположное А будет состоять в том, что все три выбранных человека не имеют диплома с отличием. Найдем вероятность противоположного события. Для этого применим классическую формулу, получаем

.

По формуле (3.3) найдем вероятность события А :

. ■

Решение примера 3.3 может быть получено и другим, более длинным способом. Нетрудно понять, что событие А есть сумма следующих событий:

А 1 – среди выбранных только один кандидат с дипломом с отличием;

А 2 – среди выбранных два кандидата с дипломом с отличием;

А 3 – среди выбранных три кандидата с дипломом с отличием.

По классической формуле получаем

Очевидно, что события А 1 , А 2 , А 3 – несовместны, следовательно можно применить теорему 3.3. Таким образом

Понятно, что первый способ решения намного проще.

В выше рассмотренных теоремах и примерах предполагалась несовместность соответствующих случайных событий. Естественно, может возникнуть задача, в которой требуется найти вероятность появления хотя бы одного из совместных событий. Теорему 3.1 в этом случае применять нельзя. Существует более общий вид теоремы сложения вероятностей, который использует понятие вероятности произведения событий.

Теорема умножения вероятностей событий

Пусть рассматривается некоторое испытание, в котором возможно появление случайного события А . Если кроме условия испытания никаких ограничений для события А не существует, то вероятность события А называют безусловной вероятностью. Если же задаются некоторые дополнительные условия, то появляется условная вероятность этого события. Чаще всего дополнительные условия связаны с появлением другого случайного события. Итак, при анализе того или иного явления может возникнуть вопрос: влияет ли на возможность появления некоторого события А наступление другого случайного события В и если влияет, то как? Например, наступление В ведет к обязательному наступлению события А или, наоборот, исключает возможность появления события А , а может быть лишь изменяет значение вероятности. Легко понять, что если событие В является благоприятствующим событию А , то при наступлении события В событие А всегда наступает, или если А и В – два несовместных в данном испытании события, то при наступлении события В событие А никогда не будет происходить. Однако это так называемые крайние случаи. Наибольший интерес возникает тогда, когда наступление события В как-то изменяет (увеличивает или уменьшает) вероятность появления события А , не превращая его в достоверное или невозможное при новых условиях событие. Характеристикой такого влияния одного события на другое служит условная вероятность.

Условной вероятностью события А при условии В называется вероятность события А , вычисленная в предположении, что событие В уже произошло.

Аналогично можно определить условную вероятность события В , при условии, что событие А уже произошло.

Пример 3.4. Пусть в урне находятся 6 белых и 8 черных шаров. Из урны последовательно друг за другом случайным образом вынимают два шара, не возвращая их обратно. Найти вероятность того, что второй шар окажется белым, если первым был вынут также белый шар?

Решение . Пусть событие А состоит в том, что второй шар окажется белым, а событие В , что первый шар белый. В задаче требуется найти вероятность события А , при условии, что событие В произошло, т.е. найти . Если событие В произошло, то в урне осталось 13 шаров, из которых 5 белых. Следовательно, вероятность вынуть белый шар из 13, среди которых 5 белых равна .■

Отметим два момента.

Во-первых, для события А может быть найдена не только его условная вероятность, но и так называемая полная вероятность события, т.е. вероятность того, что второй шар окажется белым при выборе первым любого шара. О нахождении такой вероятности речь пойдет в пункте 3.4.

Во-вторых, условие примера может быть так изменено, что цвет первого выбранного шара вообще не будет влиять на вероятность появления события А . Будем считать, что шары после фиксирования их цвета возвращаются обратно в урну. Тогда, очевидно, вероятность события А не зависит от того, какого цвета был выбран первый шар, т.е. от появления (или не появления) события В . В этом случае , т.е. вероятность события А совпадает с условной вероятностью этого события. Сами же события А и В являются независимыми в данном испытании.

Два события А и В называются независимыми, если вероятность появления каждого из них не зависит от того, появилось другое событие или нет. В противном случае, события называются зависимыми.

Из определения следует, что для независимых событий А и В справедливы формулы:

. (3.5)

Получим формулу для нахождения условной вероятности, используя классическое определение. Пусть испытание состоит из n равновозможных элементарных событий. Число событий, благоприятствующих событию А , равно т А ; событию В т В ; произведению событий АВ т АВ . Очевидно, что и . Так как событию В благоприятствует т В исходов, из которых только т А благоприятствуют А , то условная вероятность равна

. Окончательно, получаем

(3.6)

Необходимо обратить внимание на то, что знаменатель в формуле (3.6) отличен от нуля, так как по условию событие В может произойти, т.е. т В не равно нулю.

Рассуждая аналогично, можно получить формулу для условной вероятности события В : . Но, так как событие АВ ничем не отличается от события ВА и , то условную вероятность события В можно определить по формуле

(3.7)

В наиболее полных, применяющих аксиоматический подход, курсах теории вероятностей формулы (3.6) и (3.7) принимают за определение условной вероятности, а формулы (3.5) – за определение независимых событий.

Из формул (3.6) и (3.7) непосредственно вытекает следующая теорема умножения вероятностей.

Теорема 3.2. Вероятность одновременного появления двух случайных событий равна произведению вероятности одного события на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило, т.е.

(3.8)

Следствие. Вероятность одновременного появления нескольких случайных событий равна произведению вероятности одного события на условные вероятности всех остальных, при этом вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились, т.е.

Пример 3.5. В лотереи находятся 20 билетов, из которых 5 выигрышных. Случайным образом выбирают последовательно друг за другом 3 билета без возвращения. Определить вероятность того, что первый, второй и третий билеты будут выигрышными.

Решение. Пусть событие А состоит в том, что первым выберут выигрышный билет, событие В – в том, что второй билет будет выигрышным и, наконец, С – третий билет выигрышный. Очевидно, что .

Условная вероятность события В при условии, что событие А произошло, т.е. из лотереи был выбран один выигрышный билет, равна (всего билетов осталось 19, из них 4 выигрышных).

Условная вероятность события С при условии, что события А и В произошли, т.е. были выбраны два выигрышных билета, равна .

По следствию к теореме 3.2 вероятность произведения равна

Необходимо отметить, что задача 3.5 может быть решена с помощью классической формулы и формул комбинаторики:

.

Теорема 3.2 верна для любых случайных событий А и В . В частном случае, когда события А и В являются независимыми справедливо следующее утверждение.

Теорема 3.3. Вероятность одновременного появления двух несовместных событий А и В равна произведению вероятностей этих событий, т.е.

Доказательство. События А и В – независимы. По теореме 3.2 с учетом формулы (3.5), получим

Теорема доказана.

Итак, теорема 3.3 говорит о том, что вероятность произведения независимых событий находится по формуле (3.9). Верно и обратное утверждение.

Теорема 3.4. Если для двух событий верна формула (3.9), то эти события независимы.

Приведем без доказательства несколько важных свойств, справедливых для независимых событий.

1. Если событие В не зависит от А , то событие А не зависит от В .

2. Если события А и В – независимы, то независимы и события А и .

3. Если два события независимы, то независимы и противоположные им события.

Теорема 3.3 может быть обобщена на конечное число событий. Однако, прежде чем это сделать, необходимо более подробно остановиться на понятии независимости трех и более событий.

Для группы, состоящей из трех и более событий, существует понятие попарной независимости и независимости в совокупности.

События А 1 , А 2 , …, А n называются попарно независимыми , если любые два из этих событий независимы.

События А 1 , А 2 , …, А n называются независимыми в совокупности (или просто независимыми) , если они попарно независимы и независимы каждое событие и все возможные произведения всех остальных.

Например, три события А 1 , А 2 , А 3 независимы в совокупности, если независимы следующие события:

А 1 и А 2 , А 1 и А 3 , А 2 и А 3 ,

А 1 и А 2 А 3 , А 2 и А 1 А 3 , А 3 и А 1 А 2 .

Теорема 3.5. Если события А 1 , А 2 , …, А n независимы в совокупности, то вероятность их одновременного появления вычисляется по формуле:

Доказательство. Покажем, что формула верна для трех событий. Если событий больше трех, то справедливость формулы доказывается методом математической индукции.

Итак, покажем, что . По условию теоремы события А 1 , А 2 , А 3 независимы в совокупности. Следовательно, независимыми являются, например, два события А 1 А 2 и А 3 . По формуле (3.9), получим . По условию события А 1 и А 2 также независимы. Применив к первому сомножителю формулу (3.9), окончательно, получим .

Теорема доказана.

Необходимо отметить, что если события попарно независимы, то отсюда не следует, что они будут и независимы в совокупности. И, наоборот, если события независимы в совокупности, то они, очевидно, по определению будут и попарно независимы.

Рассмотрим пример событий попарно независимых, но зависимых в совокупности.

Пример 3.6. Пусть в коробке лежат 4 одинаковых карточки с написанными на них числами:


Случайным образом выбирает одну карточку. Событие А означает, что выбрали карточку, на которой есть число 1, событие В предполагает, что на выбранной карточке есть число 2, событие С – число 3. Выяснить являются ли события А , В и С попарно независимыми или независимыми в совокупности.

Решение. Вероятность каждого из событий А , В и С можно найти по классической формуле (всего карточек 4, на двух из них есть числа 1, 2, 3 соответственно): .

Покажем, что события А , В и С попарно независимы. Выберем любые два события, например, А и В . Вероятность их произведения , так как одновременное появление чисел 1 и 2 может быть только на одной карточке из четырех.

Таким образом, справедливо равенство . По теореме 3.4 события А и В независимы. Аналогично можно показать независимость событий В и С , а также событий А и С . Попарная независимость доказана.

Покажем, что эти события не являются независимыми в совокупности. Вероятность одновременного появления всех трех событий, т.е. появления всех трех чисел, равна , так как только на одной карточке из четырех есть все три числа. Произведение вероятностей событий равно . Таким образом, , следовательно, независимость в совокупности отсутствует. ■

Из теоремы умножения вероятностей и теоремы сложения вероятностей несовместных событий непосредственно следует теорема сложения вероятностей совместных событий.

Произведением, или пересечением, событий Л и В называют событие, состоящее в одновременном наступлении событий и Л, и В. Обозначение произведения АВ или Л и В.

Например, двукратное попадание в цель есть произведение двух событий, ответ на оба вопроса билета на экзамене есть произведение двух событий.

События Л и В называют несовместными, если их произведение - событие невозможное, т.е. ЛВ = V.

Например, события Л - выпадение герба и В - выпадение цифры при однократном бросании монеты наступить одновременно не могут, их произведение - событие невозможное, события Л и В несовместные.

Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию (рис. 6.4).

Рис. 6.4. Геометрическая интерпретация произведения (а) и суммы (б) двух совместных событий

Пусть событие Л - множество точек области Л, событие В - множество точек области В. Заштрихованная область соответствует событию ЛВ на рис. 6Ла и событию Л + В на рис. 6.46.

Для несовместных событий Л и В имеем ЛВ = V (рис. 6.5а). Событию Л + В соответствует заштрихованная область на рис. 6.56.


Рис. 6.5. Геометрическая интерпретация произведения (а ) и суммы (б) двух несовместных событий

События А и А называют противоположными, если они несовместны и в сумме составляют достоверное событие, т.е.

A A = V; A + A = U.

Например, произведем один выстрел по цели: событие А - стрелок попал в цель, А - не попал; подброшена монета:

событие А - выпадение орла, А - выпадение цифры; школьники пишут контрольную работу: событие А - ни одной

ошибки в контрольной работе, А - есть ошибки в контрольной работе; студент пришел сдавать зачет: событие А - сдал

зачет, А - не сдал зачет.

В классе есть мальчики и девочки, отличники, хорошисты и троечники, изучающие английский и немецкий язык. Пусть событие М - мальчик, О - отличник, А - изучающий английский язык. Может ли случайно вышедший из класса ученик быть и мальчиком, и отличником, и изучающим английский язык? Это и будет произведение или пересечение событий МОА.

Пример 6.15. Бросают игральный кубик - куб, сделанный из однородного материала, грани которого занумерованы. Наблюдают за числом (числом очков), выпадающим на верхней грани. Пусть событие А - появление нечетного числа, событие В - появление числа, кратного трем. Найти исходы, составляющие каждое из событий (?/, А, А + В У АВ) и указать их смысл.

Решение. Исход - появление на верхней грани любого из чисел 1, 2, 3, 4, 5, 6. Множество всех исходов составляет пространство элементарных событий U = {1, 2, 3, 4, 5, 6}. Ясно, что событие А = {1, 3, 5}, событие В = {3, 6}.

Событие А + В = {1, 3, 5, 6} - появление либо нечетного числа, либо числа, кратного трем. При перечислении исходов учтено, что каждый исход в множестве может содержаться только один раз.

Событие АВ = {3} - появление и нечетного числа, и числа, кратного трем.

Пример 6.16. Проверено домашнее задание у трех студентов. Пусть событие А { - выполнение задания i-м студентом, г = 1, 2, 3.

Каков смысл событий: А = A t + А 2 + Л 3 , А и В = A t A 2 A 3 ?

Решение. Событие А = А х + А 2 + А 3 - выполнение задания хотя бы одним студентом, т.е. или любым одним студентом (или первым, или вторым, или третьим), или любыми двумя, или всеми тремя.

Событие А = А х -А 2 -А 3 - задание не выполнено ни одним студентом - ни первым, ни вторым, ни третьим. Событие В = А { А 2 А 3 - выполнение задания тремя студентами - и первым, и вторым, и третьим.

При рассмотрении совместного наступления нескольких событий возможны случаи, когда появление одного из них сказывается на возможности появления другого. Например, если осенью день солнечный, то менее вероятно, что погода испортится (начнется дождь). Если же солнца не видно, то больше шансов, что пойдет дождь.

Событие Л называется независимым от события В, если вероятность события А не меняется в зависимости от того, произошло или нет событие В. Иначе событие А называется зависимым от события В. Два события А и В называются независимыми, если вероятность одного из них не зависит от появления или непоявления другого, зависимыми - в противном случае. События называют попарно независимыми, если каждые два из них независимы друг от друга.

Теорема умножения вероятностей формулируется следующим образом. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:

Эта теорема справедлива для любого конечного числа событий, если только они независимы в совокупности, т.е. вероятность любого из них не зависит от того, произошли или нет другие из этих событий.

Пример 6.17. Студент сдает три экзамена. Вероятность успешной сдачи первого экзамена 0,9, второго - 0,65, третьего - 0,35. Найти вероятность того, что он не сдаст хотя бы один экзамен.

Решение. Обозначим А событие - студент не сдал хотя бы один экзамен. Тогда Р(А ) = 1 - /-’(1/1), где А - противоположное событие - студент сдал все экзамены. Поскольку сдача каждого экзамена не зависит от других экзаменов, то Р{А) = 1 - Р(1/1) = = 1 - 0,9 0,65 0,35 = 0,7953.

Вероятность события А, вычисленная при условии, что имеет место событие В, называется условной вероятностью события А при условии появления В и обозначается Р В (А) или Р(А/В).

Теорема. Вероятность появления произведения двух событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло :

Пример 6.18. Ученик дважды извлекает по одному билету из 34. Какова вероятность того, что он сдаст экзамен, если им подготовлено 30 билетов и в первый раз вынут неудачный билет?

Решение. Пусть событие А состоит в том, что в первый раз достался неудачный билет, событие В - во второй раз вынут удачный билет. Тогда А? В - ученик сдаст экзамен (при указанных обстоятельствах). События А и В зависимы, так как вероятность выбора удачного билета со второй попытки зависит от исхода первого выбора. Поэтому используем формулу (6.6):

Заметим, что полученная в решении вероятность «0,107. Почему так мала вероятность сдачи экзамена, если выучено 30 билетов из 34 и дается две попытки?!

Расширенная теорема сложения формулируется следующим образом. Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления (произведения):

Пример 6.19. Два студента решают задачу. Вероятность того, что первый студент решит задачу (событие А), равна 0,9; вероятность того, что второй студент решит задачу (событие В), равна 0,8. Какова вероятность того, что задача будет решена?

Решение. Нас интересует событие С, которое состоит в том, что задача будет решена, т.е. первым, или вторым студентом, или двумя студентами одновременно. Таким образом, интересующее пас событие С = А + В. События А и В совместны, значит применима теорема сложения вероятностей для случая совместных событий: Р(А + В) = Р(А) + Р(В) - Р(АВ). Для нашего случая Р(А + В) = = 0,9 + 0,8 + 0,9 0,8 = 0,98 (события А и В совместны, но независимы).

Пример 6.20. Студент знает 20 вопросов из 25. Какова вероятность ответить на три вопроса из 25?

Решение. Введем событие Л, - студент знает ответ на i -й предложенный вопрос, i = 1,2,3. События Л, Л 2 , Л 3 - зависимые. Поэтому

При отыскании вероятностей событий использовалось классическое определение вероятности.

Часто бывает так, что вероятность некото-рого события можно найти, зная вероятности других событий, связанных с этим со-бытием.

Теорема сложения вероятностей.

?Теорема 2.6. (Теорема сложения вероятностей ). Вероят-ность суммы (объедине-ния; появления одного из них, безраз-лично какого) двух произвольных событий равна сумме вероят-ностей этих событий за вычетом вероятности их совместного появле-ния, т.е. P (A +B ) = P (A ) + P (B ) - P (AB ).

Следствие 1. Вероятность суммы (объединения) попарно не-совместных событий равна сумме их вероятностей, т.е. P (A 1 +A 2 +...+A n ) = = P (A 1) + P (A 2) + ... + P (A n ).

Следствие 2. Пусть A 1 , A 2 , ... , A n - полная группа попарно несовместных собы-тий. Тогда P (A 1)+P (A 2)+ ... +P (A n ) = 1.

Следствие 3. Сумма вероятностей противоположных собы-тий равна единице, т.е. P (A ) + P (`A ) = 1.

Пример 2.10. В урне 5 белых, 6 черных и 9 красных шаров. Какова вероятность того, что первый наугад вынутый шар окажется черным или красным?

Решение. Здесь имеется всего 20 элементарных исходов, из кото-рых появлению черного шара бла-гоприятствует 6, а появлению крас-ного - 9. Поэтому вероятность со-бытия A - появление черного шара: P (A ) = 6/20, а вероятность события B - появление красного шара: P (A ) = 9/20. Поскольку собы-тия A и B несовме-стны (вынимается всего один шар), то P (A +B ) = P (A ) + P (B ) = 6/20 + 9/20 = 0,75. Ответ : 0,75.

? Условная вероятность события B (P A (B)) - вероятность события B, вычислен-ная при условии, что событие A уже про-изошло . Если A и B - независимые события, то P A (B ) = P (B ), P B (A ) = P (A ).

Теорема умножения вероятностей.

?Теорема 2.7. (Теорема умножения вероятностей ). Вероят-ность произведения (пе-ресечения; совместного появления) двух произвольных событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при усло-вии, что первое собы-тие уже наступило, т.е. P (AB ) = P (A P A (B ) = P (B P B (A ).

Пример 2.11. На полке стоят 11 научно-популярных книг и 5 ху-дожественных. Какова вероят-ность того, что две подряд наугад взятые книги окажутся художественными?

Решение. Рассмотрим два события B 1 и B 2: B 1 - при первом испы-та-нии взята художественная книга, B 2 - при втором испытании взята ху-дожественная книга. По теореме 2.7 вероятность такого собы-тия равна P (B 1 B 2)=P (B 1)·P B 1 (B 2). Вероятность события B 1 P (B 1) = 5/16. По-сле первого испытания на полке останется 15 книг, из которых 4 ху-доже-ственные, по-этому условная веро-ятность P B 1 (B 2) = 4/15. Отсюда искомая вероятность равна: P (B 1 B 2) = . Ответ : 1/12.


Следствие 1. Вероятность совместного появления несколь-ких событий равна про-изведению вероятности одного из них на условные вероят-ности всех остальных, при-чем вероятность ка-ждого последующего события вычис-ляют при условии, что все предыдущие события уже наступили, т.е. P (A 1 ·A 2 ·...·A n ) = P (A 1)·P A 1 (A 2) P A 1A 2 (A 3). · ... ·P A 1 A 2… An -1 (A n ).

Пример 2.12. Из десяти карточек составлено слово «МАТЕМА-ТИКА». Из них школьник нау-дачу выбирает поочередно четыре кар-точки и приставляет одну к другой. Какова вероятность того, что по-лучится слово «ТЕМА»?

Решение. Введем события A 1 , A 2 , A 3 , A 4 , состоящие в том, что пер-вая выбранная буква - Т, вторая - Е, тре-тья - М и четвертая - А. Нам нужно найти вероят-ность произведения этих событий. По след-ствию 1 из тео-ремы 2.7 имеем:

P (A 1 ·A 2 ·A 3 ·A 4) = P (A 1)·P A 1 (A 2)·P A 1A 2 (A 3)·P A 1A 2A 3 (A 4) = Ответ : 1/420.

Следствие 2. Если A 1 ,A 2 ,...,A n - независимые события, то ве-роятность их произве-дения (совместного появления) равна про-изведению вероятностей этих собы-тий, т.е. P (A 1 ·A 2 · ... ·A n ) = P (A 1)·P (A 2)· ... ·P (A n ).

Пример 2.13. Два стрелка независимо один от другого де-лают по одному выстрелу по од-ной и той же мишени. Вероятность поражения мишени первым стрелком - 0,7, вторым - 0,8. Какова вероят-ность того, что ми-шень будет поражена?

Решение. Пусть событие А состоит в том, что мишень поразил пер-вый стрелок, а событие В - в том, что ми-шень поразил второй стрелок. По условию Р (А ) = 0,7 и Р (В ) =0,8.

1-й способ . Рассмотрим противоположные события:`A - промах первого стрелка,`B - промах вто-рого. По следствию 3 из тео-ремы 2.6 получаем Р (`A ) = 1-0,7 = 0,3 и Р (`B ) = 1-0,8 = 0,2. Произведение собы-тий `A ·`B означает промах обоих стрелков. По смыслу задачи собы-тия А и В являются незави-симыми, поэтому и противоположные со-бытия`A и`B также будут независимыми. По следствию 2 из теоремы 2.7 получаем вероят-ность того, что оба стрелка промахнутся: Р(`А·`В) = 0,3·0,2 = 0,06. Нас же интересу-ет вероятность противоположного события, состоящего в том, что мишень поражена. По-этому искомую вероят-ность мы находим по следствию 3 из теоремы 2.6: 1 - 0,06 = 0,94.

2-й способ . Искомая событие (мишень будет поражена хотя бы од-ним стрелком) есть сумма собы-тий A и B . По теореме 2.6. P (A +B ) = P (A ) + P (B ) - P (AB ) = 0,7 + 0,8 - 0,7·0,8 = 1,5 - 0,56 = 0,94. Ответ : 0,94.

Пример 2.14 . В студенческой группе 25 человек. Какова вероят-ность того, что дни рождения хотя бы у двоих совпадают?

Решение . Вероятность того, что дни рождения у двух произвольно взятых людей совпадают, равна 1/365 (считаем, что попадания дня рождения на любой день в году - равновозможные случаи). Тогда ве-роятность того, что дни рожде-ния двух людей не совпадают, т.е. веро-ятно-сть противопо-ложного события равна 1-1/365 = 364/365. Вероят-ность того, что день рожде-ния третьего отличается от дней рождения двух предыдущих, составит 363/365 (363 случая из 365 благо-приятст-вуют этому событию). Рассуждая аналогично, находим, что для 25-го члена группы эта веро-ятность равна 341/365. Далее найдем вероят-ность того, что дни рождения всех 25 членов группы не совпадают. По-скольку все эти события (несовпадение дня рождения каждого оче-редного члена группы с днями ро-ждения преды-дущих) независимы, то по следствию 2 из теоремы 2.7 получаем:

P (A 2 A 3 ... A 25) = · · ... · » 0,43.

Это вероятность того, что дни рождения у всех 25 человек не сов-падают. Ве-роятность противопо-ложного события будет вероятностью того, что хотя бы у двоих дни рождения совпадают, т.е. иско-мой веро-ятностью P » 1-0,43 = 0,57. Ответ : » 0,57.

Формула полной вероятно-сти.

?Теорема 2.8. Пусть B 1 , B 2 , …, B n - полная группа попарно не-совместных событий. Ве-роятность события A , которое может наступить лишь при условии наступления од-ного из событий B 1 , B 2 , …, B n , равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность собы-тия A , т.е.

P(A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + … + P (B n P Bn (A ).

Эта формула называется формулой полной вероятно-сти . События B 1 , B 2 , …, B n , удовлетворяющие условию теоремы 2.8, называют гипотезами .

Пример 2.15. Турист равновероятно выбирает один из трех маршру-тов: конный, водный и горный. Вероятность, что он успешно преодолеет путь при выборе конного способа передвижения, равна 0,75, при выборе водного пути - 0,8, при выборе горного маршрута - 0,55. Найдите вероятность, что турист успешно преодолеет весь путь при любом выборе маршрута.

Решение . Введем события: A - «Турист успешно преодолеет весь путь при любом выборе маршрута», B 1 , B 2 , B 3 - выбран соответственно, конный, водный и горный маршрут. Поскольку выбор маршрута равновероятен, то вероятно-сти выбора каждого маршрута P (B 1) = P (B 2) = P (B 3) = 1/3. По условию P B 1 (A ) = 0,75; P B 2 (A ) = 0,8; P B 3 (A ) = 0,55. Тогда по формуле полной вероятности: P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = (1/3)·0,75 + (1/3) ·0,8 + (1/3)0,55 = 0,7.

Ответ : 0,7.

?Теорема 2.9. Условная вероятность любой гипотезы B i (i = 1, 2, … ,n ) вычисляется по формуле Бейеса :

Формула Бейеса позволяет переоценить вероятности гипотез после того, как ста-но-вится известным результат испытания, в итоге которого появилось событие A .

Пример 2.16. Имеется три набора микросхем, первый из которых содержит 100, второй 300 и тре-тий 600 микросхем. Вероятность того, что микросхема, взятая наугад из первого набора, исправна, равна 0,9, а для второго и третьего наборов - соответственно 0,85 и 0,8. Какова вероятность того, что: а) произвольно взятая микросхема исправна: б) исправная микросхема извлечена из второго на-бора?

Решение . а) В данном случае имеется три гипотезы, вероятности которых P (B 1) = 0,1, P (B 2) = 0,3, P (B 3) = 0,6. Пользуясь формулой полной вероятности, находим P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = 0,1·0,9 + 0,3·0,85 + 0,6·0,8 = 0,825.

б) Допустим, что искомое событие A произошло - извлечена ис-правная микросхема. Найдем ве-ро-ятность P A (B 2) того, что эта микро-схема извлечена из второго набора. Согласно формулы Бейеса,

Ответ : а) 0,825; б) 17/55.

Пример 2.17. Из 10 учеников, которые пришли на экзамен по ма-тематике, трое подготовились от-лично, четверо - хорошо, двое - удовлетворительно, а один совсем не готовился. В билетах 20 вопро-сов. Отлично подготовившиеся ученики могут ответить на все 20 во-просов, хорошо - на 16 вопросов, удовлетворительно - на 10, и непод-готовившийся - на 5 вопросов. Каждый ученик получает наугад 3 во-проса из 20. Ученик, приглашенный первым, ответил на все 3 вопроса. Какова вероятность того, что он отличник?

P A (B 1). По фор-муле Бейеса P A (B 1) = » 0,58.

Как видим, искомая вероятность сравнительно не велика, Поэтому учителю придется предложить ученику еще несколько дополнитель-ных вопросов. Ответ : 0,58.