Функции обмена воды в организме человека. Водно-солевой обмен человека: функции, нарушение и регуляция. Что считается нормой

Ранее уже были рассмотрены биологические функции воды и ее содержание в организме человека. В настоящем разделе мы рассмотрим некоторые конкретные примеры участия воды в обмене веществ.

Потребность организма в воде зависит от многих факторов: температуры окружающей среды, характера деятельности, состава потребляемой пищи. Человек удовлетворяет потребность в воде за счет экзогенных и эндогенных источников. К экзогенным источникам относятся твердая и жидкая пища, питье. Потребление экзогенной воды регулируется чувством жажды, возникающим вследствие повышения осмотического давления плазмы крови и лимфы при усиленном выведении воды из организма, либо при ограничении поступления ее с пищей, а также при избыточном потреблении минеральных солей. Эндогенная вода образуется внутри организма при окислении биологических молекул. При окислении различных веществ синтезируется разное количество эндогенной воды: при окислении 100 г жира образуется 107 г воды; 100 г белка – 41 г; 100 г углеводов – 55 г. Образование эндогенной воды увеличивается во время мышечной работы, а также при охлаждении организма.

Перераспределение воды внутри организма происходит постоянно. Изменение распределения воды между плазмой крови, лимфой, меж- и внутриклеточными жидкостями происходит при интенсивной мышечной работе, требующей большого количества энергии в виде АТФ. Напряженная работа мышц приводит к увеличению в клетках и межклеточной жидкости концентрации молочной кислоты и катионов Ка+, что обуславливает усиленный приток воды в клетки и межклеточную жидкость, а содержание воды в плазме крови наоборот снижается.

Выделение воды из организма происходит с мочой (1,5–1,6 л в сутки), потом (0,5–0,6 л), выдыхаемым воздухом (0,4 л), калом (0,2 л). Потери воды с потом и выдыхаемым воздухом значительно увеличиваются при длительной мышечной работе. На состояние организма пагубно влияет как недостаток, так и избыток воды. При излишке воды увеличивается нагрузка на сердце и почки, происходит вымывание из организма необходимых органических и минеральных веществ. При недостатке воды повышается вязкость крови, что затрудняет работу сердца, может задерживаться выведение продуктов обмена, высокая концентрация которых приводит к нарушению метаболизма.

Вода играет значительную роль в метаболизме углеводов, липидов и белков. Как было показано выше, основным путем распада белков, полисахаридов и липидов является гидролиз, протекающий при участии соответствующих ферментов, относящихся к классу гидролаз. Для аминокислот характерно гидролитическое дезаминирование с образованием оксикислот, а гидролиз аспарагина и глугамина приводит к образованию аспарагановой и глутаминовой кислот, соответственно. Основополагающее значение в энергетическом обмене имеет гидролиз макроэргической связи в молекуле АТФ (в трансляции – гидролиз ГТФ).

Второй процесс, где вода играет роль субстрата – это реакции гидратации, связанные сприсоединением воды по месту разрыва двойной связи. Примеры реакций гидратации можно найти в любом виде обмена. Не обходятся без участия воды и некоторые биосинтетические процессы. Например, прямое аминирование оксикетокислот, прежде всего a-кетоглутаровой кислоты, синтез высших жирных кислот и другие процессы.

Некоторые катионы оказывают специфическое влияние на задержку и выведение воды из клеток и тканей организма. Катионы Nа+, например, вызывают задержку воды, а катионы К+ и Са2+, наоборот – выведение воды из клеток и тканей организма.

Почки – орган, на уровне которого происходит гормональная регуляция водного обмена. С одной стороны, диуретический гормон, выделяемый передней долей гипофиза, способствует усиленному выведению воды из организма с мочой (диурез), с другой – антидиуретический гормон (вазопрессин), образуемый задней долей гипофиза, повышает всасывание воды в почечных канальцах, сокращая тем самым диурез.

С водным обменом очень тесно связан минеральный обмен, к рассмотрению которого мы обратимся в следующем разделе.

Водно-солевым обменом называют совокупность процессов поступ­ления воды и электролитов в организм, распределения их во внут­ренней среде и выделения из организма.

У здорового человека поддерживается равенство объемов выделяющейся из организма и поступившей в него за сутки воды, что называют водным балансом организма. Можно рассматривать также и баланс электролитов - натрия, калия, кальция и т.п. Средние показатели водного баланса здорового человека в состоянии покоя показаны в табл. 12.1, а ба­ланса электролитов в табл. 12.2.

Средние величины параметров водного баланса организма человека

Среднесуточный баланс обмена некоторых веществ у человека

При различных возмущающих воздействиях (сдвиги температуры среды, разный уровень физической активности, изменение характера питания) отдельные показатели баланса могут меняться, но сам баланс при этом сохраняется.

В условиях патологии происходят нарушения баланса с преобладанием либо задержки, либо потерь воды.

Вода организма

Вода является важнейшим неорганическим компонентом организма, обеспечивающим связь внешней и внутренней среды, транспорт веществ между клетками и органами. Являясь растворителем орга­нических и неорганических веществ, вода представляет собой ос­новную среду развертывания метаболических процессов. Она входит в состав различных систем органических веществ.

Каждый грамм гликогена, например, содержит 1,5 мл воды, каждый грамм белка - 3 мл воды.

При ее участии формируются такие структуры как кле­точные мембраны, транспортные частицы крови, макромолекулярные и надмолекулярные образования.

В процессе обмена веществ и окислении водорода, отделенного от субстрата, образуется эндоген­ная «вода окисления», причем ее количество зависит от вида рас­падающихся субстратов и уровня обмена веществ.

Так, в покое при окислении:

  • 100 г жира образуется более 100 мл воды,
  • 100 г белка - около 40 мл воды,
  • 100 г углеводов - 55 мл воды.

Повышение катаболизма и энергетического обмена ведет к резкому увеличению образуемой эндогенной воды.

Однако, эндогенной воды у человека недостаточно для обеспечения водной среды метаболических процессов, особенно выведения в растворенном виде продуктов метаболизма.

В частности, повышение потребления белков и, соответственно, конечное превращение их в мочевину, удаляемую из организма с мочой, ведет к абсолютной необходимости возрастания потерь воды в почках, что требует по­вышенного ее поступления в организм.

При питании преимуще­ственно углеводной, жировой пищей и небольшом поступлении в организм NaCl потребность организма в поступлении воды меньше.

    У здорового взрослого человека суточная потребность в воде колеб­лется от 1 до 3 л.

    Общее количество воды в организме составляет у человека от 44 до 70% массы тела или примерно 38-42 л.

    Содержание ее в разных тканях варьирует от 10% в жировой ткани до 83-90% в почках и крови, с возрастом количество воды в организме уменьшается, так­же как и при ожирении.

    У женщин содержание воды ниже, чем у мужчин.


Вода организма образует два водных пространства:

1. Внутриклеточное (2/3 обшей воды).

2. Внеклеточное (1/3 общей воды).

3. В ус­ловиях патологии появляется третье водное пространство - вода полостей тела: брюшной, плевральной и т.д.

Внеклеточное водное пространство включает два сектора:

1. Внутрисосудистый водный сектор, т.е. плазму крови, объем которой составляет около 4- 5% массы тела.

2. Интерстициальный водный сектор, содержащий 1/4 всей воды организма (15% массы тела) и являющийся наиболее подвижным, меняющим объем при избытке или недостатке воды в теле.

Вся вода организма обновляется примерно через месяц, а внеклеточное водное пространство - за неделю.

Гипергидратация организма

Избыточное поступление и образование воды при неадекватно малом ее выделении из организма ведет к накоплению воды и этот сдвиг водного баланса получил название гипергидратация.

При ги­пергидратации вода накапливается, в основном, в интерстициальном водном секторе.

Водная интоксикация

Значительная степень гипергидратации проявляется водной интоксикацией.

При этом в интерстициальном водном сек­торе осмотическое давление становится ниже, чем внутри клеток, они поглощают воду, набухают и осмотическое давление в них ста­новится тоже сниженным.

В результате повышенной чувствитель­ности нервных клеток к уменьшению осмолярности водная интоксикация может сопровождаться возбуждением нервных центров и мышечными судорогами.

Дегидратация организма

Недостаточное поступление и образование воды или чрезмерно большое ее выделение приводят к уменьшению водных пространств, главным образом, интерстициального сектора, что носит название дегидратация.

Это сопровождается сгущением крови, ухудшением ее реологических свойств и нарушением гемодинамики.

Недостаток в организме воды в объеме 20% массы тела ведет к летальному ис­ходу.

Регуляция водного баланса организма

Система регуляции водного баланса обеспечивает два основных гомеостатических процесса:

    во-первых, поддержание постоянства общего объема жидкости в организме и,

    во-вторых, оптимальное распределение воды между водными пространствами и секторами организма.

К числу факторов поддержания водного гомеостазиса относятся осмотическое и онкотическое давление жидкостей водных пространств, гидростатическое и гидродинамическое давление крови, проницаемость гистогематических барьеров и других мембран, ак­тивный транспорт электролитов и неэлектролитов, нейро-эндокрин­ные механизмы регуляции деятельности почек и других органов выделения, а также питьевое поведение и жажда.

Водно солевой обмен

Водный баланс организма тесно связан с обменом электролитов. Суммарная концентрация минеральных и других ионов создает оп­ределенную величину осмотического давления.

Концентрация от­дельных минеральных ионов определяет функциональное состояние возбудимых и невозбудимых тканей, а также состояние проница­емости биологических мембран,- поэтому принято говорить о водно-электролитном (или солевом) обмене.

Водно электролитный обмен

Поскольку синтез ми­неральных ионов в организме не осуществляется, они должны по­ступать в организм с пищей и питьем. Для поддержания электро­литного баланса и, соответственно, жизнедеятельности, организм в сутки должен получать примерно 130 ммоль натрия и хлора, 75 ммоль калия, 26 ммоль фосфора, 20 ммоль кальция и других эле­ментов.

Роль электролитов в жизнедеятельности организма

Для гомеостаза электролитов необходимо взаимодействие несколь­ких процессов: поступление в организм, перераспределение и депо­нирование в клетках и их микроокружении, выделение из организ­ма.

Поступление в организм зависит от состава и свойств пищевых продуктов и воды, особенностей их всасывания в желудочно-ки­шечном тракте и состояния энтерального барьера. Однако, несмотря на широкие колебания количества и состава пищевых веществ и воды, водно-солевой баланс в здоровом организме неуклонно под­держивается за счет изменений экскреции с помощью органов вы­деления. Основную роль в этом гомеостатическом регулировании выполняют почки.

Регуляция водно-солевого обмена

Регуляция водно-солевого обмена, как и большинство физиологичес­ких регуляций, включает афферентное, центральное и эфферентное звенья. Афферентное звено представлено массой рецепторных аппара­тов сосудистого русла, тканей и органов, воспринимающих сдвиги осмотического давления, объема жидкостей и их ионного состава.

В результате, в центральной нервной системе создается интегрированная картина состояния водно-солевого баланса в организме. Следствием центрального анализа является изменение питьевого и пищевого по­ведения, перестройка работы желудочно-кишечного тракта и системы выделения (прежде всего функции почек), реализуемая через эффе­рентные звенья регуляции. Последние представлены нервными и, в большей мере, гормональными влияниями.опубликовано econet.ru

Водно-солевым обменом называют совокупность процессов поступ­ления воды и электролитов в организм, распределения их во внут­ренней среде и выделения из организма.

Водно-солевой обмен в организме человека

Водно-солевым обменом называют совокупность процессов поступ­ления воды и электролитов в организм, распределения их во внут­ренней среде и выделения из организма.

У здорового человека поддерживается равенство объемов выделяющейся из организма и поступившей в него за сутки воды , что называют водным балансом организма. Можно рассматривать также и баланс электролитов - натрия, калия, кальция и т.п. Средние показатели водного баланса здорового человека в состоянии покоя показаны в табл. 12.1, а ба­ланса электролитов в табл. 12.2.

Средние величины параметров водного баланса организма человека

Таблица 12.1. Средние величины параметров водного баланса организма человека (мл/сут)

Потребление и образование воды

Выделение воды

Питье и жидкая пища

1200

С мочой

1500

Твердая пища

1100

С потом

500

Эндоген­ная «вода окисления»

300

С выдыхаемым воздухом

400

С калом

100

Итого Поступление

2500

Итого Выделение

2500

Внутренний цикл жидкостей желудочно-кишечного тракта (мл/сут)

Секреция

Реабсорбция

Слюна

1500

Желудочный сок

2500

Желчь

500

Сок pancreas

700

Кишечный сок

3000

Итого

8200

8100

Итого 8200 - 8100 = вода в кале 100 мл

Среднесуточный баланс обмена некоторых веществ у человека

Таблица 12.2 Среднесуточный баланс обмена некоторых веществ у человека

Вещества

Поступление

Выделение

пища

метаболизм

моча

фекалии

пот и воздух

Натрий (ммоль)

155

150

2,5

2,5

Калий (ммоль)

5,0

Хлорид (ммоль)

155

150

2,5

2,5

Азот (г)

Кислоты (мэкв)

нелетучие

летучие

14000

14000

При различных возмущающих воздействиях (сдвиги температуры среды, разный уровень физической активности, изменение характера питания) отдельные показатели баланса могут меняться, но сам баланс при этом сохраняется.

В условиях патологии происходят нарушения баланса с преобладанием либо задержки, либо потерь воды.

Вода организма

Вода является важнейшим неорганическим компонентом организма, обеспечивающим связь внешней и внутренней среды, транспорт веществ между клетками и органами. Являясь растворителем орга­нических и неорганических веществ, вода представляет собой ос­новную среду развертывания метаболических процессов. Она входит в состав различных систем органических веществ.

Каждый грамм гликогена, например, содержит 1,5 мл воды, каждый грамм белка - 3 мл воды.

При ее участии формируются такие структуры как кле­точные мембраны, транспортные частицы крови, макромолекулярные и надмолекулярные образования.

В процессе обмена веществ и окислении водорода , отделенного от субстрата, образуется эндоген­ная «вода окисления» , причем ее количество зависит от вида рас­падающихся субстратов и уровня обмена веществ.

Так, в покое при окислении:

  • 100 г жира образуется более 100 мл воды,
  • 100 г белка - около 40 мл воды,
  • 100 г углеводов - 55 мл воды.

Повышение катаболизма и энергетического обмена ведет к резкому увеличению образуемой эндогенной воды.

Однако, эндогенной воды у человека недостаточно для обеспечения водной среды метаболических процессов, особенно выведения в растворенном виде продуктов метаболизма.

В частности, повышение потребления белков и, соответственно, конечное превращение их в мочевину, удаляемую из организма с мочой, ведет к абсолютной необходимости возрастания потерь воды в почках, что требует по­вышенного ее поступления в организм.

При питании преимуще­ственно углеводной, жировой пищей и небольшом поступлении в организм NaCl потребность организма в поступлении воды меньше.

    У здорового взрослого человека суточная потребность в воде колеб­лется от 1 до 3 л.

    Общее количество воды в организме составляет у человека от 44 до 70% массы тела или примерно 38-42 л.

    Содержание ее в разных тканях варьирует от 10% в жировой ткани до 83-90% в почках и крови, с возрастом количество воды в организме уменьшается, так­же как и при ожирении.

    У женщин содержание воды ниже, чем у мужчин.

Вода организма образует два водных пространства:

1. Внутриклеточное (2/3 обшей воды).

2. Внеклеточное (1/3 общей воды).

3. В ус­ловиях патологии появляется третье водное пространство - вода полостей тела: брюшной, плевральной и т.д.

Внеклеточное водное пространство включает два сектора:

1. Внутрисосудистый водный сектор, т.е. плазму крови, объем которой составляет около 4- 5% массы тела.

2. Интерстициальный водный сектор, содержащий 1/4 всей воды организма (15% массы тела) и являющийся наиболее подвижным, меняющим объем при избытке или недостатке воды в теле.

Вся вода организма обновляется примерно через месяц, а внеклеточное водное пространство - за неделю.

Гипергидратация организма

Избыточное поступление и образование воды при неадекватно малом ее выделении из организма ведет к накоплению воды и этот сдвиг водного баланса получил название гипергидратация .

При ги­пергидратации вода накапливается, в основном, в интерстициальном водном секторе.

Водная интоксикация

Значительная степень гипергидратации проявляется водной интоксикацией.

При этом в интерстициальном водном сек­торе осмотическое давление становится ниже, чем внутри клеток, они поглощают воду, набухают и осмотическое давление в них ста­новится тоже сниженным.

В результате повышенной чувствитель­ности нервных клеток к уменьшению осмолярности водная интоксикация может сопровождаться возбуждением нервных центров и мышечными судорогами.

Дегидратация организма

Недостаточное поступление и образование воды или чрезмерно большое ее выделение приводят к уменьшению водных пространст в, главным образом, интерстициального сектора, что носит название дегидратация .

Это сопровождается сгущением крови, ухудшением ее реологических свойств и нарушением гемодинамики.

Недостаток в организме воды в объеме 20% массы тела ведет к летальному ис­ходу.

Регуляция водного баланса организма

Система регуляции водного баланса обеспечивает два основных гомеостатических процесса:

    во-первых, поддержание постоянства общего объема жидкости в организме и,

    во-вторых, оптимальное распределение воды между водными пространствами и секторами организма.

К числу факторов поддержания водного гомеостазиса относятся осмотическое и онкотическое давление жидкостей водных пространств, гидростатическое и гидродинамическое давление крови, проницаемость гистогематических барьеров и других мембран, ак­тивный транспорт электролитов и неэлектролитов, нейро-эндокрин­ные механизмы регуляции деятельности почек и других органов выделения, а также питьевое поведение и жажда.

Водно солевой обмен

Водный баланс организма тесно связан с обменом электролитов . Суммарная концентрация минеральных и других ионов создает оп­ределенную величину осмотического давления.

Концентрация от­дельных минеральных ионов определяет функциональное состояние возбудимых и невозбудимых тканей, а также состояние проница­емости биологических мембран,- поэтому принято говорить о водно-электролитном (или солевом) обмене .

Водно электролитный обмен

Поскольку синтез ми­неральных ионов в организме не осуществляется, они должны по­ступать в организм с пищей и питьем. Для поддержания электро­литного баланса и, соответственно, жизнедеятельности, организм в сутки должен получать примерно 130 ммоль натрия и хлора, 75 ммоль калия, 26 ммоль фосфора, 20 ммоль кальция и других эле­ментов.

Роль электролитов в жизнедеятельности организма

Для гомеостаза электролитов необходимо взаимодействие несколь­ких процессов: поступление в организм, перераспределение и депо­нирование в клетках и их микроокружении, выделение из организ­ма.

Поступление в организм зависит от состава и свойств пищевых продуктов и воды, особенностей их всасывания в желудочно-ки­шечном тракте и состояния энтерального барьера . Однако, несмотря на широкие колебания количества и состава пищевых веществ и воды, водно-солевой баланс в здоровом организме неуклонно под­держивается за счет изменений экскреции с помощью органов вы­деления. Основную роль в этом гомеостатическом регулировании выполняют почки.

Регуляция водно-солевого обмена

Регуляция водно-солевого обмена, как и большинство физиологичес­ких регуляций, включает афферентное, центральное и эфферентное звенья. Афферентное звено представлено массой рецепторных аппара­тов сосудистого русла, тканей и органов, воспринимающих сдвиги осмотического давления, объема жидкостей и их ионного состава.

В результате, в центральной нервной системе создается интегрированная картина состояния водно-солевого баланса в организме. Следствием центрального анализа является изменение питьевого и пищевого по­ведения, перестройка работы желудочно-кишечного тракта и системы выделения (прежде всего функции почек), реализуемая через эффе­рентные звенья регуляции. Последние представлены нервными и, в большей мере, гормональными влияниями. опубликовано

Составляет 275-290 мосм/кг. Осмоляльность плазмы сохраняется постоянной благодаря механизмам, способным реагировать на изменения, равные 1-2% ее исходной величины. Чтобы поддержать водно-осмотическое равновесие, поступление воды в организм должно быть равно ее выделению. Нарушения этого равновесия приводят к гипонатриемии или гипернатриемии .

В норме вода теряется с мочой, калом, через кожу и легкие. В отсутствие тонкокишечного свища , поноса или рвоты потери воды через ЖКТ минимальны. Испарение воды с кожи важно для регуляции температуры тела. Обязательные потери воды через почки определяются минимальным количеством осмотически активных веществ, которое необходимо вывести из организма для поддержания осмотического баланса (600 мосм/сут). Поскольку же максимальная осмоляльность мочи составляет 1200 мосм/кг, для поддержания осмотического баланса минимальный диурез должен составлять 500 мл/сут.

Потребление. Главный стимул для потребления воды - жажда . Она возникает при повышении осмоляльности либо снижении ОЦК или АД. Осмотический порог жажды достаточно индивидуален, в среднем он составляет 295 мосм/кг. Превышение этого порога стимулирует осморецепторы гипоталамуса , в результате чего и возникает жажда.

Повышение концентрации в крови веществ, не создающих эффективной осмоляльности ( мочевины и глюкозы), не вызывает жажду.

В норме потребление воды превышает физиологические потребности.

Выведение. В отличие от потребления, выведение воды находится под жестким контролем. Главный его регулятор - АДГ ( вазопрессин , аргинин-вазопрессин). Он представляет собой полипептид, синтезируемый в супраоптическом и паравентрикулярном ядрах гипоталамуса . После синтеза АДГ поступает в нейрогипофиз , откуда и выделяется в кровь. Связывание АДГ с рецепторами типа V2 базолатеральной мембраны главных клеток собирательных трубочек активирует аденилатциклазу и запускает встраивание в апикальную мембрану этих клеток водных каналов - структур, образованных белком аквапорином-2 . В результате становится возможным пассивное перемещение воды по осмотическому градиенту из просвета собирательных трубочек в интерстициальную ткань мозгового вещества почек. Основной стимул для секреции АДГ - повышение осмоляльности внеклеточной жидкости , а поскольку ее основным катионом является натрий , осмоляльность внеклеточной жидкости определяется главным образом его концентрацией.

Изменение осмоляльности внеклеточной жидкости приводит к изменению объема осморецепторных нейронов гипоталамуса, что и сопровождается их активацией.

Осмотический порог секреции АДГ составляет 280-290 мосм/кг.

Регуляторные механизмы очень чувствительны, поэтому колебания осмоляльности плазмы не превышают 1-2%.

Секреция АДГ повышается при снижении ОЦК , снижении АД , тошноте , боли , стрессе , гипогликемии , беременности , применении целого ряда лекарственных средств. Изменения ОЦК и АД воспринимаются соответственно

Вода составляет около 75% биомассы Земли, однако ее содержание в разных видах живых организмов, различных их тканях и органах колеблется в широких границах. Так, биологические жидкости (кровь, лимфа, слюна, пасока деревьев) содержат 88-99% воды, в то время как в костной ткани животных, древесине растений ее значительно меньше -- 20--45%, в зерне злаковых (воздушно-сухое состояние) -- 12--14%. Своеобразными рекордсменами по содержанию воды являются медузы -- до 99,8%.

У бактерий на воду приходится 75--85% массы клетки, у спор --40% и меньше. Чем моложе организм или орган, тем выше в нем содержание воды. Например, у 4-месячного эмриона человека воды содержится 94%, у новорожденного ребенка - 74%, у взрослого человека -- около 67%

В молодых листьях травянистых растении количество воды колеблется в переделах 85-90%, а в старых 70--80%.

Большую часть воды в организме (у человека до 2/3) составляет внутриклеточная вода; меньшую часть (у человека около 1/3)-внеклеточная вода, которая разделена на субкомпартменты: интерстициальная, синовиальная и др. Распределение воды в теле человека неравномерно, наименьшее количество ее содержат кости (45% и жировая ткань, наибольшее -- кровь (92%), моча (83%), слюна 99%, пот (97%).

Вода в живом организме может быть в свободной и связанной форме. Если и водном растворе содержатся ионы какого-либо электролита, то вокруг них ориентируются диполи воды, так как ионы обладают зарядом. Вокруг катионов диполи воды располагаются своими отрицательно заряженными концами, вокруг анионов -- положительно заряженными. Такое связывание воды называется электростатической гидратацией.

Высокомолекулярные соединения тоже гидратируются, если содержат полярные, ионогенные группировки (карбоксикпьные, альдегидные, спиртовые, аминогруппы и др.). При этом гидратная оболочка может быть не сплошной, а только вокруг полярных групп. Степень гидратации различных ионов и молекул не одинакова, зависит от размеров частиц и величины их заряда. Чем выше удельная плотность заряда (больше заряд и меньше размеры), тем сильнее гидратация. Молекулы воды располагаются при гидратации тремя слоями:

1) непосредственно около иона, строго упорядочены и ориентированы сильным электрополем;

2) слой воды на некотором отдалении от иона, ориентированность молекул воды меньшая;

3) далеко отстоящие от иона молекулы воды с обычной структурой

Благодаря гидратации ионов и молекул часть воды в организме находится в связанном состоянии. Водородные связи макромолекул удерживают часть молекул воды.

Вокруг молекул белка, например, слой строго структурированной воды достигает толщины 1--2 нм и составляет до 30% массы гидратированной белковой молекулы. Следующий слой гидратационной воды -- до 10 нм, и вода еще сохраняет в нем некоторую ориентацию. Кроме того, вода входит в третичную структуру ряда макромолекул и надмолекулярных структур. Помимо того, что вода связана непосредственно на молекулярном уровне, она входит и в состав субклеточных рибосом, лизосом, мембран митохондрий, эндоплазматического ретикулума, ядерной оболочки. Воду, связанную субклеточными образованиями, называют иммобильной водой. Слабосвязанная вода может служить растворителем, замерзает при температурах, близких к О0 С. Прочносвязанная вода почти не способна быть растворителем, она замерзает при темперах значительно ниже 0°С.

Велика и многообразна роль воды в жизни любого организма. Прежде всего она заключается в том, что вода является основной средой протекания жизненных процессов. В этом отношении очень важны уникальные свойства воды как растворителя. Присутствие в молекуле воды двух атомов водорода и двух необобщенных электронных пар обуславливает образование 4 водородных связей которые придают воде исключительную растворяющую способность. Это свойство позволило воде стать универсальной и доминирую щей дисперсионной средой в биологических системах. Другое важное свойство воды -- полярность ее молекул, способность к диссоциации. Благодаря этому свойству она активирует диссоциацию других веществ, особенно слабых электролитов, которые широко представлены в биологических системах. В чистом виде слабые электролиты находятся в недиссоциированном состоянии. При растворенни в воде они диссоциируют и становятся реакционно-активными, что часто является условием их биологической активности.

Будучи основой внутренней среды в клетках и участвуя непосредственно в формировании клеточных структур, вода в значительной мере определяет их активность. Так, от степени набухания митохондрий зависит интенсивность протекающих в них процессов окислительного фосфорилирования, от насыщения водой рибосом-- активность биосинтеза белка. Обезвоживание листьев растений снижает интенсивность фотосинтеза вследствие неблагоприятных конформационных изменений ферментов хлоропластов, участвующих в темновой фазе фотосинтеза (другая причина- закрывание устьиц). Только при определенной степени оводненности белки и нуклеиновые кислоты полностью проявляют свою биологическую активность.

Вода непосредственно участвует в ряде биохимических реакций, прежде всего -- в гидролитических. Важную роль она играет в процессах теплорегуляции, ее испарение через поверхность тела животных и растений снижает температуру, предотвращает перегрев. Вода характеризуется очень высокой теплотой парообразования и теплоемкостью, это обеспечивает надежную стабилизацию температуры организма. Вода определяет легкость протекания обменных процессов между организмом и средой: например, увлажненность стенок клеток корневых волосков способствует растворению и поглощению питательных солей корнями. Малая вязкость воды обеспечивает высокую скорость движения по кровеносным и лимфатическим сосудам, по флоэме и ксилеме растений. Большое значение воды в процессах жизнедеятельности объясняет, почему животные переносят отсутствие воды хуже, чем отсутствие пищи. Например, голуби без пищи погибают через 2 недели, а без воды -- через 5 дней, мыши без воды погибают в 10 раз быстрее, чем без пищи.

В обычных условиях взрослый человек теряет в сутки 1500 мл воды, 600 мл удаляется через кожу в виде пота, 500 мл -- с мочой, 400 мл -- с выдыхаемым воздухом. Основная масса воды потребляется с пищей. Так как при полном окислении белков, жиров и углеводов в количествах, обеспечивающих выделение энергии, равное 8400 кДж/сут, образуется 350 мл воды, то потребление воды должно составлять 1150 мл. Вода, образующаяся при обмене белков, жиров и углеводов, получила название эндогенной воды.

Очень энергично обмен воды осуществляется в растениях: в жаркий день через лист проходит количество воды, в два раза превышающее его массу. Предел потери воды, при котором нет еще видимых резких нарушений жизненных процессов, зависит от вида организма.

Так, мышечная ткань лягушки может терять воду с 80 до 20% без существенных отрицательных явлений.

Тело же человека может перенести снижение содержания воды не более чем на 10%. Растения тоже очень чувствительны к потере воды; только в семенах и спорах жизнь сохраняется при очень низком содержании воды (около 10%)-

проникновение воды в клетку и обратно осуществляется через поры клеточных мембран. Механизм этого процесса исследован недостаточно. Существует ряд точек зрения на этот процесс. По мнению одних ученых, перенос воды осуществляется за счет свободной диффузии, другие -- придают решающее значение осмотическим явлениям, третьи -- считают этот процесс активным, что обусловлено взаимодействием дипольных молекул с полярными веществами мембран.

В регуляции обмена воды у человека и животных первостепенное значение имеют импульсы, возникающие в коре головного мозга. Поступление воды в организм регулируется чувством жажды, она возникает в результате рефлекторного возбуждения соответствующих участков коры головного мозга при первых признаках изменения осмотического давления плазмы крови.

Исследованиями выдающихся советских физиологов Л. А. Орбели и К. М. Быкова доказана регулирующая роль высших отделов центральной нервной системы в процессах водного и минерального обмена: при мнимом питье у животного с фистулой в пищеводе вода не попадает в желудок, однако сам акт питья способствует удалению воды из кровяного русла, что наблюдается при нормальном приеме воды. Сильные эмоциональные переживания нередко сопровождаются усиленным выделением мочи, а иногда приводят наоборот, к анурии -- задержке мочеотделения.

Гормоны гипофиза оказывают существенное влияние па баланс воды. Диуретический гормон передней доли гипофиза обеспечивает выведение воды а его антагонист вазопрессин (гормон задней доли гипофиза) удерживает воду, обеспечивая обратное всасывание ее в почечных канальцах. Катионы Na удерживают воду в клетках и тканях, К и Са способствуют ее выведению. Всасывание воды начинается в желудке, однако основная масса её всасывается в кишечнике. Ряд тканей и органов при избыточном поступлении воды могут служить ее депо. У человека и животных это кожа и печень, у растении -- межклеточное пространство. Уровень испарения воды у растений регулируется в основном устьичным аппаратом.