Горючие газы: названия, свойства и применение. Горючие газы, их получение и свойства Область применения при сварке

ПРИЛОЖЕНИЕ 7. Характеристика взрывоопасных и вредных газов, наиболее часто встречающихся в резервуарах и подземных сооружениях.

В подземных сооружениях наиболее часто обнаруживаются такие взрывоопасные и вредные газы: метан, пропан, бутан, пропилен, бутилен, окись (оксид) углерода, углекислый газ, сероводород и аммиак.

Метан CH 4 (болотный газ) — бесцветный горючий газ без запаха, легче воздуха. Проникает в подземные сооружения из почвы. Образуется при медленном разложении без доступа воздуха растительных веществ: при гниении клетчатки под водой (в болотах, стоячих водах, прудах) или разложении растительных остатков в залежах каменного угля. Метан является составной частью промышленного газа и при неисправном газопроводе может проникать в подземные сооружения. Не ядовит, но его присутствие уменьшает количество кислорода в воздушной среде подземных сооружений, что приводит к нарушению нормального дыхания при работах в этих сооружениях. При содержании метана в воздухе 5-15% по объему образуется взрывоопасная смесь.

Пропан C 3 H 8 , бутан C 4 H 10 , пропилен C 3 H 6 и бутилен C 4 H 8 — бесцветные горючие газы, тяжелее воздуха, без запаха, трудно смешиваются с воздухом. Вдыхание пропана и бутана в небольших количествах не вызывает отравления; пропилен и бутилен оказывают наркотическое воздействие.

Сжиженные газы с воздухом могут образовывать взрывоопасные смеси при следующем их содержании, % по объему:

Пропан………………… 2,3 — 9,5

Бутан…………………. 1,6 — 8,5

Пропилен………………. 2,2 — 9,7

Бутилен……………….. 1,7 — 9,0

Средство защиты — шланговые противогазы ПШ-1, ПШ-2.

Окись углерода СО — бесцветный газ, без запаха, горючий и взрывоопасный, немного легче воздуха. Окись углерода чрезвычайно ядовита. Физиологическое воздействие окиси углерода на человека зависит от ее концентрации в воздухе и длительности вдыхания.

Вдыхание воздуха, содержащего окись углерода выше предельно допустимой концентрации, может привести к отравлению и даже к смерти. При содержании в воздухе 12,5-75% по объему окиси углерода образуется взрывоопасная смесь.

Средство защиты — фильтрующий противогаз марки СО.

Углекислый газ CO 2 [двуокись (диоксид) углерода] — бесцветный газ, без запаха, с кисловатым вкусом, тяжелее воздуха. Проникает в подземные сооружения из почвы. Образуется в результате разложения органических веществ. Образуется также в резервуарах (баках, бункерах и др.) при наличии в них сульфоугля или угля вследствие его медленного окисления.

Попадая в подземное сооружение, углекислый газ вытесняет воздух, заполняя со дна пространство подземного сооружения. Углекислый газ не ядовит, но обладает наркотическим действием и способен раздражать слизистые оболочки. При высоких концентрациях вызывает удушье вследствие уменьшения содержания кислорода в воздухе.

Средство защиты — шланговые противогазы ПШ-1, ПШ-2.

Сероводород H 2 S — бесцветный горючий газ, имеет запах тухлых яиц, несколько тяжелее воздуха. Ядовит, действует на нервную систему, раздражает дыхательные пути и слизистую оболочку глаз.

При содержании в воздухе сероводорода 4,3 — 45,5% по объему образуется взрывоопасная смесь.

Средство защиты — фильтрующие противогазы марок В, КД.

Аммиак NH 3 — бесцветный горючий газ с резким характерным запахом, легче воздуха, ядовит, раздражает слизистую оболочку глаз и дыхательные пути, вызывает удушье. При содержании в воздухе аммиака 15-28% по объему образуется взрывоопасная смесь.

Средство защиты — фильтрующий противогаз марки КД.

Водород H 2 — бесцветный горючий газ без вкуса и запаха, значительно легче воздуха. Водород — физиологически инертный газ, но при высоких концентрациях вызывает удушье вследствие уменьшения содержания кислорода. При соприкосновении кислотосодержащих реагентов с металлическими стенками емкостей, не имеющих антикоррозийного покрытия, образуется водород. При содержании в воздухе водорода 4-75% по объему образуется взрывоопасная смесь.

Кислород O 2 — бесцветный газ, без запаха и вкуса, тяжелее воздуха. Токсическими свойствами не обладает, но при длительном вдыхании чистого кислорода (при атмосферном давлении) наступает смерть вследствие развития плеврального отека легких.

Кислород не горюч, но является основным газом, поддерживающим горение веществ. Высокоактивен, соединяется с большинством элементов. С горючими газами кислород образует взрывоопасные смеси.

Углекислый газ бесцветный газ с едва ощутимым запахом не ядовит, тяжелее воздуха. Углекислый газ широко распространен в природе. Растворяется в воде, образуя угольную кислоту Н 2 CO 3 , придает ей кислый вкус. В воздухе содержится около 0,03% углекислого газа. Плотность в 1,524 раза больше плотности воздуха и равна 0,001976 г/см 3 (при нулевой температуре и давлении 101,3 кПа). Потенциал ионизации 14,3В. Химическая формула – CO 2 .

В сварочном производстве используется термин «углекислый газ» см. . В «Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением» принят термин «углекислота» , а в - термин «двуокись углерода» .

Существует множество способов получения углекислого газа, основные из которых рассмотрены в статье .

Плотность двуокиси углерода зависит от давления, температуры и агрегатного состояния, в котором она находится. При атмосферном давлении и температуре -78,5°С углекислый газ, минуя жидкое состояние, превращается в белую снегообразную массу «сухой лед» .

Под давлением 528 кПа и при температуре -56,6°С углекислота может находиться во всех трех состояниях (так называемая тройная точка).

Двуокись углерода термически устойчива, диссоциирует на окись углерода и только при температуре выше 2000°С.

Углекислый газ – это первый газ, который был описан как дискретное вещество . В семнадцатом веке, фламандский химик Ян Баптист ван Гельмонт (Jan Baptist van Helmont ) заметил, что после сжигания угля в закрытом сосуде масса пепла была намного меньше массы сжигаемого угля. Он объяснял это тем, что уголь трансформируется в невидимую массу, которую он назвал «газ».

Свойства углекислого газа были изучены намного позже в 1750г. шотландским физиком Джозефом Блэком (Joseph Black) .

Он обнаружил, что известняк (карбонат кальция CaCO 3) при нагреве или взаимодействии с кислотами, выделяет газ, который он назвал «связанный воздух» . Оказалось, что «связанный воздух» плотнее воздуха и не поддерживает горение.

CaCO 3 + 2HCl = СО 2 + CaCl 2 + H 2 O

Пропуская «связанный воздух» т.е. углекислый газ CO 2 через водный раствор извести Ca(OH) 2 на дно осаждается карбонат кальция CaCO 3 . Джозеф Блэк использовал этот опыт для доказательства того, что углекислый газ выделяется в результате дыхания животных .

CaO + H 2 O = Ca(OH) 2

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

Жидкая двуокись углерода бесцветная жидкость без запаха, плотность которой сильно изменяется с изменением температуры. Она существует при комнатной температуре лишь при давлении более 5,85 МПа. Плотность жидкой углекислоты 0,771 г/см 3 (20°С). При температуре ниже +11°С она тяжелее воды, а выше +11°С - легче.

Удельная масса жидкой двуокиси углерода значительно изменяется с температурой , поэтому количество углекислоты определяют и продают по массе. Растворимость воды в жидкой двуокиси углерода в интервале температур 5,8-22,9°С не более 0,05%.

Жидкая двуокись углерода превращается в газ при подводе к ней теплоты. При нормальных условиях (20°С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа . При чрезмерно быстром отборе газа, понижении давления в баллоне и недостаточном подводе теплоты углекислота охлаждается, скорость ее испарения снижается и при достижении «тройной точки» она превращается в сухой лед, который забивает отверстие в понижающем редукторе, и дальнейший отбор газа прекращается. При нагреве сухой лед непосредственно превращается в углекислый газ, минуя жидкое состояние. Для испарения сухого льда необходимо подвести значительно больше теплоты, чем для испарения жидкой двуокиси углерода - поэтому если в баллоне образовался сухой лед, то испаряется он медленно.

Впервые жидкую двуокись углерода получили в 1823 г. Гемфри Дэви (Humphry Davy) и Майкл Фарадей (Michael Faraday).

Твердая двуокись углерода «сухой лед», по внешнему виду напоминает снег и лед. Содержание углекислого газа, получаемого из брикета сухого льда, высокое - 99,93-99,99%. Содержание влаги в пределах 0,06-0,13%. Сухой лед, находясь на открытом воздухе, интенсивно испаряется, поэтому для его хранения и транспортировки используют контейнеры. Получение углекислого газа из сухого льда производится в специальных испарителях. Твердая двуокись углерода (сухой лед), поставляемая по ГОСТ 12162.

Двуокись углерода чаще всего применяют :

  • для создания защитной среды при металлов;
  • в производстве газированных напитков;
  • охлаждение, замораживание и хранения пищевых продуктов;
  • для систем пожаротушения;
  • для чистки поверхностей сухим льдом.

Плотность углекислого газа достаточно высока, что позволяет обеспечивать защиту реакционного пространства дуги от соприкосновения с газами воздуха и предупреждает азотирование при относительно небольших расходах углекислоты в струе. Углекислый газ является , в процессе сварки он взаимодействует с металлом шва и оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие .

Ранее препятствием для применения углекислоты в качестве защитной среды являлись в швах. Поры вызывались кипением затвердевающего металла сварочной ванны от выделения оксиси углерода (СО) вследствие недостаточной его раскисленности.

При высоких температурах углекислый газ диссоциирует с образованием весьма активного свободного, одноатомного кислорода:

Окисление металла шва выделяющимся при сварке из углекислого газа свободным нейтрализуется содержанием дополнительного количества легирующих элементов с большим сродством к кислороду, чаще всего кремнием и марганцем (сверх того количества, которое требуется для легирования металла шва) или вводимыми в зону сварки флюсами (сварка ).

Как двуокись, так и окись углерода практически не растворимы в твердом и расплавленном металле. Свободный активный окисляет элементы, присутствующие в сварочной ванне, в зависимости от их сродства к кислороду и концентрации по уравнению:

Мэ + О = МэО

где Мэ - металл (марганец, алюминий или др.).

Кроме того, и сам углекислый газ реагирует с этими элементами.

В результате этих реакций при сварке в углекислоте наблюдается значительное выгорание алюминия, титана и циркония, и менее интенсивное - кремния, марганца, хрома, ванадия и др.

Особенно энергично окисление примесей происходит при . Это связано с тем, что при сварке плавящимся электродом взаимодействие расплавленного металла с газом происходит при пребывании капли на конце электрода и в сварочной ванне, а при сварке неплавящимся электродом - только в ванне. Как известно, взаимодействие газа с металлом в дуговом промежутке происходит значительно интенсивнее вследствие высокой температуры и большей поверхности контактирования металла с газом.

Ввиду химической активности углекислого газа по отношению к вольфраму сварку в этом газе ведут только плавящимся электродом.

Двуокись углерода нетоксична и невзрывоопасна. При концентрациях более 5% (92 г/м 3) углекислый газ оказывает вредное влияние на здоровье человека, так как она тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м 3 (0,5%).

Углекислый газ поставляется по . Для получения качественных швов используют газообразную и сжиженную двуокись углерода высшего и первого сортов.

Углекислоту транспортируют и хранят в стальных баллонах по или цистернах большой емкости в жидком состоянии с последующей газификацией на заводе, с централизованным снабжением сварочных постов через рампы. В стандартный с водяной емкостью 40 л заливается 25 кг жидкой углекислоты, которая при нормальном давлении занимает 67,5% объема баллона и дает при испарении 12,5 м 3 углекислого газа. В верхней части баллона вместе с газообразной углекислотой скапливается воздух. Вода, как более тяжелая, чем жидкая двуокись углерода, собирается в нижней части баллона.

Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 10...15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров, ухудшая при сварке шва.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой двуокиси углерода газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого при отборе углекислого газа перед редуктором устанавливают подогреватель газа. Окончательное удаление влаги после редуктора производится специальным осушителем, наполненным стеклянной ватой и хлористым кальцием, силикогелием, медным купоросом или другими поглотителями влаги

Баллон с двуокисью углерода окрашен в черный цвет, с надписью желтыми буквами «УГЛЕКИСЛОТА» .

Кислород - газ без цвета и запаха, соединяется с большинством элементов, кроме инертных газов, благородных металлов, а также фтора. Активно поддерживает горения. Химическая формула О 2 .Температура сжижения кислорода при нормальном атмосферном давлении -182,96°С. Температура затвердевания - 218,4 o С.

Кислород получают из атмосферного воздуха. Принцип получения заключается в следующем: воздух охлаждается и сжижается, а затем кислород выделяется вследствие разницы температур кипения кислорода (-183 o С) и азота (-195,8 o С), благодаря чему азот испаряется из воздуха раньше и быстрее, чем кислород.

Кислород поступает потребителю по трубопроводу под давлением 0,5-3,0 МПа (кгс/см 2) от кислородной станции или газификатора, от перепускных разрядных рамп или индивидуальных баллонов под давлением 15 МПа (150 кгс/см 2).

Кислород газообразный технический выпускается по ГОСТ 5583-78 трех сортов: (I, II, III) I сорт - чистота 99,7%; II сорт - чистота 99,5%; III сорт - чистота 99,2%.

На предприятиях используется в основном кислород I сорта. Для чистовой резки допускается применение кислорода II сорта, но при этом значительно возрастает его расход.

При работе с кислородом следует всегда помнить, что кислород при контакте с маслом или жиром образует взрывоопасное соединение, поэтому вся кислородная аппаратура должна подвергаться тщательному обезжириванию. В процессе работы необходимо следить, чтобы грязь, масло и жир не могли попадать на детали аппаратуры.

Ацетилен

Ацетилен - газ, ненасыщенный углеродом, легче воздуха, бесцветен, имеет сладковатый вкус и слабо эфирный запах. Химическая формула C 2 H 2 . Температура плавления при сгорании в смеси с кислородом до 3200 o С. Длительное вдыхание ацетилена вызывает головокружение и отравление. Ацетилен имеет наибольшую из всех горючих газов скорость реакции горения в кислороде. Этим объясняется его склонность к хлопкам и обратным ударам.

Смесь ацетилена с воздухом и кислородом крайне взрывоопасна в различных пропорциях (2,2 - 81% - с воздухом, и 2,8 - 93% - с кислородом), кроме того чистый ацетилен взрывоопасен в сжатом состоянии, начиная с 15 МПа (150 кгс/см 2). К потребителю ацетилен поступает по трубопроводу от газоразрядных перепускных рамп, в баллонах или его получают из карбида кальция в ацетиленовом генераторе. Использование растворенного ацетилена из баллонов предпочтительнее ацетилена, полученного в ацетиленовом генераторе: более устойчиво работает аппаратура, повышается безопасность работ и чистота рабочего места, обеспечивается лучшее использование дорогостоящего карбида кальция.

Газы - заменители ацетилена

Ввиду высокой стоимости ацетилена (С 2 Н 2 стоит приблизительно в 4 раза дороже пропанобутановой смеси и в 43 раза дороже природного газа). Кроме того газы-заменители обладают рядом преимуществ перед кислородно-ацетиленовой резкой: более высокое качество поверхности реза; отсутствует оплавление кромок; процесс резки устойчивый, отсутствуют «хлопки» пламени; расстояние между мундштуком и разрезаемым металлом может изменяться в более широких пределах; износоустойчивость мундштуков при применении природного газа в 2-3 раза больше по сравнению с кислородно-ацетиленовой резкой. Газы-заменители подразделяются на две группы: сжиженные и сжимаемые.

Сжимаемые газы - метан и многокомпонентные газы, такие, как природный, городской, нефтяной и коксовый. К ним же относится и водород. Природные газы состоят в основном из метана и подаются, как правило, по трубопроводу или (реже) в баллонах под давлением 15 МПа (150 кгс/см 2). Городской газ по своему составу непостоянен и содержит от 70 до 98% метана. К заводскому потребителю газ поступает по трубопроводу под давлением 0,3 МПа (3 кгс/см 2).

Сжиженные газы - пропан, бутан и их смеси. Крупные потребители получают их в железнодорожных и автомобильных цистернах, из которых их переливают в заводские стационарные емкости (хранилища). Далее газ подается в газификатор или отбирается в паровой фазе. В таком виде он поступает в заводской газорегуляторный пункт и далее в межцеховые газопроводы под давлением не менее 0,01 МПа (0,1 кгс/см 2).

Техника кислородной резки с использованием газов - заменителей ацетилена принципиально такая же, как при резке ацетилено-кислородным пламенем. К особенностям кислородной резки на газах - заменителях ацетилена можно отнести следующее: максимальная температура пламени находится на расстоянии от ядра в 2-3 раза большем, чем у ацетилено-кислородного пламени. Это позволяет изменять расстояние между мундштуком резака и разрезаемым металлом в более широких пределах. Время начального подогрева металла при резке примерно вдвое больше, чем при нагреве ацетилено-кислородным пламенем, что несколько снижает производительность процесса резки.

В целом, кислородная резка с использованием газов-заменителей ацетилена (особенно природного газа) имеет ряд преимуществ перед ацетилено-кислородной: более низкая себестоимость процесса за счет низкой стоимости пропан-бутановой смеси и природного газа по сравнению со стоимостью ацетилена (в 3,5 и 43 раза соответственно!); более высокое качество поверхности реза (отсутствует оплавление кромок); процесс резки устойчивый, отсутствуют «хлопки» и обратные удары, что в свою очередь увеличивает безопасность и долговечность резака; износоустойчивость мундштуков в 2-3 раза больше у резаков с использованием газов-заменителей, чем у ацетиленовых; расстояние между мундштуком резака и разрезаемым металлом изменяется в более широких пределах.

Помимо газов также следует уделять внимание нефтепродуктам. Бензин, керосин, мазут и битум востребованные на нефтяном рынке. Оптом купить дизельное топливо летнее можно в компании Евро Групп Ойл по недорогим ценам.

Основные свойства горючих газов и жидкостей

Наименование Низшая удельная теплота, МДж/м 3 (ккал/м) Температура пламени в смеси с кислородом, о C Коэффициент замены Количество кислорода, подаваемого на 1 м 3 горючего, м 3 Предел взрываемости в смеси с кислородом, %
Ацетилен 52,8 (12600) 3100-3200 1,0 0,8-1,3 2,3-93,0
Природный газ 31-38 (7500-9000) 2000-2200 1,8 1,6-1,8 5-61 (по метану)
Городской газ 17-21 (4100-5000) 2000-2200 3,0 1,3-1,5 5-61 (по метану)
Пропан-бутан 9,1 (22000) 2500-2700 0,6 3,4-4,2 2,3-57 (по пропану)
Керосин (пары) 4,2-5 (1000-1200) 2400-2450 1-1,3 1,7-2,4 (м 3 /кг)

Жидкое горючее

Жидкое горючее - керосин, бензин - поступает к потребителю только из специальных бачков (передвижных и стационарных) под давлением до 0,3 МПа (3 кгс/см 2). Бензин и керосин перед применением следует очистить от механических примесей фильтрованием через войлок. Бензин следует использовать в смеси с керосином в соответствии 1/1.

Карбид кальция

Карбид кальция - твердое вещество темно-серого или коричневатого цвета и представляет собой продукт плавления извести с углеродом. Ацетилен получается в результате разложения карбида кальция водой по формуле: СаС 2 +2Н 2 0 = С 2 Н 2 + Са(ОН) 2 . Карбид кальция получается в больших кусках, которые дробятся. Количество мелочи и пыли, во избежание взрыва генератора, не должно превышать 5%. Транспортируется и хранится карбид кальция в специальных герметических закрытых барабанах. Масса в наполненном состоянии от 50 до 130 кг. Вскрываться барабаны должны специальными искробезопасными ключами.

Горючие газы - вещества с низким порогом теплоты сгорания. Это основной компонент которое используется для газоснабжения городов, в промышленности и других сферах жизнедеятельности. Физико-химические характеристики таких газов зависят от наличия в их составе негорючих компонентов и вредных примесей.

Виды и происхождение горючих газов

Горючие газы содержат метан, пропан, бутан, этан, водород и иногда с примесями гексана и пентана. Их получают двумя способами - из природных месторождений и искусственным путем. происхождения - топливо, результат естественного биохимического процесса разложения органики. Большинство залежей расположены на глубине менее 1,5 км и состоят преимущественно из метана с малыми примесями пропана, бутана и этана. С увеличением глубины залегания растет процентное содержание примесей. Добывается из природных залежей или в качестве сопутствующих газов нефтяных месторождений.

Чаще всего залежи природного газа сконцентрированы в осадочных породах (песчаники, галечники). Покрывающими и подстилающими слоями служат плотные глинистые породы. В качестве подошвы в основном выступают нефть и вода. Искусственные - горючие газы, получаемые вследствие термической переработки различного вида твердых топлив (кокс и др.) и производные продукты нефтепереработки.

Основным компонентом природных газов, добываемых в сухих месторождениях, является метан с небольшим количеством пропана, бутана и этана. Природный газ характеризуется постоянством состава, относится к категории сухих. Состав газа, получаемый при нефтепереработке и из смешанных газонефтяных залежей, непостоянен и зависит от величины газового фактора, природы нефти и условий раздела нефтегазовых смесей. В него входит значительное количество пропана, бутана, этана, а также другие легкие и тяжелые углеводороды, содержащиеся в нефти, вплоть до керосиновых и бензиновых фракций.

Добыча горючих природных газов заключается в извлечении его из недр, сбор, удаление лишней влаги и подготовку к транспортировке потребителю. Особенность состоит в том, что на всех стадиях от пласта до конечного потребителя весь процесс герметизирован.

Горючие газы и их свойства

Жаропроизводительность - максимальная температура, выделяемая при полном сгорании сухого газа в теоретически необходимом количестве воздуха. При этом выделяемое тепло расходуется на нагревание Для метана этот параметр в °С равен 2043, бутана - 2118, пропана - 2110.

Температура воспламенения - наименьшая температура, при которой происходит самопроизвольный процесс воспламенения без воздействия внешнего источника, искры или пламени, за счет теплоты выделяемой частицами газа. Этот параметр особенно важен для определения допустимой температуры поверхности аппаратов, используемых в опасных зонах, которая не должна превышать температуру воспламенения. Для такой аппаратуры присваивается температурный класс.

Температура вспышки - наименьшая температура, при которой выделяется достаточное количество паров (на поверхности жидкости) для воспламенения от наименьшего пламени. Это свойство не стоит обобщать с температурой воспламенения, поскольку эти параметры могут разниться в значительной степени.

Плотность газа/пара. Определяется в сравнении с воздухом, чья плотность равна 1. < 1 - растет, > 1 - падает. Например, для метана этот показатель равен 0,55.

Опасность горючих газов

Горючие газы представляют опасность тремя своими свойствами:

  1. Горючесть. Существует риск возникновения пожара, связанный с неконтролируемым воспламенением газа;
  2. Токсичность. Риск отравления газом или продуктами его горения (угарный газ);
  3. Удушение вследствие дефицита кислорода, который может быть замещен другим газом.

Процесс горения представляет собой химическую реакцию, в которую входит кислород. При этом выделяется энергия в виде теплоты, пламени. Воспламеняющим веществом выступает газ. Процесс горения газа возможен при наличии трех факторов:

  • Источник воспламенения.
  • Горючие газы.
  • Кислород.

Целью противопожарной защиты является исключение как минимум одного из факторов.

Метан

Это бесцветный легкий горючий газ без запаха. Нетоксичен. Метан составляет 98% всех природных газов. Считается основным, определяющим свойства природного газа. На 75% состоит из углерода и на 25% из водорода. Масса куб. метра - 0,717 кг. Сжижается при температуре 111 К, при этом его объем уменьшается в 600 раз. Обладает низкой реакционной способностью.

Пропан

Газ пропан - горючий газ, без цвета и запаха. Обладает большей реакционной способностью, чем метан. Содержание в природном газе 0,1-11% по массе. В попутных газах из смешанных газонефтяных месторождений до 20%, в продуктах переработки твердых топлив (бурых и каменных углей, каменноугольной смолы) до 80%. Газ пропан используется в различных реакциях для получения этилена, пропилена, низших олефинов, низших спиртов, ацетона, муравьиной и пропионовой кислоты, нитропарафинов.

Бутан

Горючий газ без цвета, со своеобразным запахом. Бутан газ легко сжимаем и летуч. Содержится в нефтяном газе до 12% по объему. Также получатся в результате крекинга нефтяных фракций и лабораторным путем по реакции Вюрца. Температура замерзания -138 о С. Как и все углеводородные газы, пожароопасен. Вреден для нервной системы, при вдыхании вызывает дисфункцию дыхательного аппарата. Бутан (газ) обладает наркотическими свойствами.

Этан

Этан - газ без цвета и запаха. Представитель углеводородов. Дегидрирование при 550-650 0 С приводит к этилену, свыше 800 0 С - к ацетилену. Содержится в природных и попутных газах до 10%. Выделяется низкотемпературной ректификацией. Значительные объемы этана выделяются при крекинге нефти. В лабораторных условиях получают по реакции Вюрца. Является основным сырьем для получения винилхлорида и этилена.

Водород

Прозрачный газ без запаха. Нетоксичен, в 14,5 раз легче воздуха. По виду водород не отличается от воздуха. Обладает высокой реакционной способностью, широкими пределами воспламенения, весьма взрывоопасен. Входит в состав едва ли не всех органических соединений. Наиболее трудно сжимаемый газ. Свободный водород в природе встречается крайне редко, но в виде соединений очень распространен.

Окись углерода

Бесцветный газ, без вкуса и запаха. Масса 1 куб. м - 1,25 кг. Содержится в высококалорийных газах наряду с метаном и другими углеводородами. Увеличение доли окиси углерода в горючем газе понижает теплоту сгорания. Оказывает токсическое влияние на человеческий организм.

Применение горючих газов

Горючие газы обладают высокой теплотой сгорания, а потому являются высокоэкономичным энергетическим топливом. Широко применяются для коммунально-бытовых нужд, на электростанциях, в металлургии, стекольной, цементной и пищевой промышленности, в качестве автомобильного топлива, при производстве строительных материалов.

Использование горючих газов в качестве сырья для производства таких органических соединений как формальдегид, метиловый спирт, уксусная кислота, ацетон, ацетальдегид, обусловлено наличием в их составе углеводородов. Метан, как основной компонент горючих природных газов, широко применяется для производства различных органических продуктов. Для получения аммиака и различного рода спиртов используется синтез-газ - продукт конверсии метана кислородом или водяным паром. Пиролизом и дегидрогенизацией метана получают ацетилен, наряду с водородом и сажей. Водород, в свою очередь, используется для синтеза аммиака. Горючие газы, и в первую очередь этан, применяют при получении этилена и пропилена, которые в дальнейшем используются в качестве сырья для производства пластмасс, искусственных волокон и синтетических каучуков.

Перспективным видом топлива для многих сфер народного хозяйства является сжиженный метан. Использование сжиженных газов во многих случаях дает большую экономическую выгоду, позволяя снизить материалозатраты на транспортировку и решить проблемы газоснабжения в отдельных районах, позволяет создавать запасы сырья для нужд химической промышленности.

Основными горючими газами, применяемыми при резке, являются ацетилен, природный газ, пропан-бутан, пары жидких горючих (керосина), которые, сгорая в кислороде, дают достаточную для резки температуру. В судостроении наиболее широко применяется кислородно-ацетиленовая резка. Рассмотрим основные свойства кислорода и ацетилена.

Кислород - химический элемент, при нормальных условиях представляющий собой бесцветный газ без запаха и вкуса. Сжатый кислород при соприкосновении с маслом и жирами мгновенно их окисляет с выделением большого количества тепла, что может привести к быстрому воспламенению масла или к взрыву. Особенно активно соединяются с кислородом металлы, поэтому он и применяется при резке.


Рис. 7.1. Кислородный баллон. 1 - днище; 2 - цилиндрический корпус; 3 - горловина; 4 - кольцо; 5 - предохранительный колпак; 6 - вентиль; 7 - опорный башмак.

Кислород поступает к месту потребления по трубопроводу или в баллонах. Баллон (рис. 7.1) представляет собой цилиндрический корпус, имеющий внизу выпуклое днище, а сверху - сферическую часть с горловиной. Горловина имеет коническое отверстие с резьбой, в которое ввертывается вентиль. Для устойчивости баллона на нижнюю часть его корпуса насажен опорный башмак. Максимальное давление кислорода в баллоне равно 14,7 МПа, Расходовать кислород из баллона можно до давления 0,29 МПа. Кислородные баллоны окрашивают в голубой цвет. Поперек баллона черной краской делают надпись «Кислород». Верхнюю сферическую часть баллона не окрашивают, а выбивают на ней паспортные данные баллона. Наполненный кислородом баллон имеет массу около 70 кг.

Ацетилен - химическое соединение углерода с водородом. Химически чистый ацетилен является бесцветным газом со слабым эфирным запахом. Технический ацетилен, применяемый для газовой резки, из-за примесей (сероводорода, аммиака и др.) имеет резкий неприятный запах. С кислородом и воздухом ацетилен образует взрывоопасные смеси, которые взрываются от огня или искры.

Ацетилен получают при взаимодействии карбида кальция с водой в специальных аппаратах, называемых ацетиленовыми генераторами.

К газорезательным постам ацетилен подается по трубопроводам или в баллонах.

При давлении более 0,19 МПа газообразный ацетилен в больших объемах становится взрывоопасным. Помещенный же в очень узкие (капиллярные) каналы, он не взрывается даже при давлении 2,45 МПа. Поэтому ацетиленовые баллоны заполняют специальной высокопористой массой (древесным активированным углем, пемзой, инфузорной землей).

Ацетилен растворяется в некоторых жидкостях, особенно в ацетоне. Учитывая это свойство, баллоны на 30-40 % по объему заполняют ацетоном. При открытом вентиле баллона ацетилен выделяется из ацетона в виде газа, а ацетон остается в баллоне.

Баллоны накачивают ацетиленом до давления 1,47- 1,86 МПа. Расходовать ацетилен из баллонов можно до давления в баллоне 0,1 МПа. При меньшем давлении происходит значительный унос паров ацетона с ацетиленом.

Ацетиленовые баллоны отличаются от кислородных по устройству вентиля и окраске. Их окрашивают в белый цвет и надписывают красной краской «Ацетилен». Масса наполненного ацетиленом баллона около 80 кг.

Пропан-бутановая смесь получается при добыче и переработке природных нефтяных газов, а также при переработке нефти. Пропан-бутан в сжиженном состоянии хранится в баллонах.

Целесообразность применения пропан-бутана в качестве заменителя ацетилена обусловливается главным образом дороговизной и дефицитностью ацетилена, однако при резке на пропан-бутане возрастает расход кислорода от 40 до 70 % в зависимости от толщины разрезаемого материала, а скорость резки снижается от 15 до 30%. Применение пропан-бутана, как и других заменителей ацетилена, допускается только по специальному разрешению администрации и по согласованию с санитарной и пожарной инспекциями.

Природный газ состоит в основном из метана (до 99 %) с небольшими примесями других газов. При нормальных температуре и давлении метан представляет собой газ без запаха и цвета, поэтому для обнаружения его утечки добавляют одорант, придающий ему резкий запах. Целесообразность использования природного газа для кислородной резки обусловлена возможностью бесперебойного централизованного снабжения им предприятий по газопроводу без существенных затрат на транспортировку; значительным снижением стоимости газорезательных работ по сравнению с ацетилено-кислородной резкой; незначительным снижением скорости резки (5-25%) по сравнению с ацетилено-кислородной резкой; возможностью использования аппаратуры (резаков), применяемой для ацетилено-кислородной резки, с незначительной переделкой отдельных деталей.

Керосин для резки используется в виде паров. Поэтому резаки имеют специальные испарители, подогреваемые вспомогательным пламенем, или форсунки. Целесообразность применения керосиново-кислородной резки обусловлена возможностью замены керосином ацетилена; сокращением расхода кислорода от 5 до 10 % при его пониженном давлении; сокращением стоимости резки стали до 10 %. Резка с применением керосина разрешается только в цеховых условиях и на открытых площадках, так как она особенно пожароопасна.