Теория относительности эйнштейна формулировка. Создание эйнштейном теории относительности. Соединение энергии с массой

Теория относительности предложена гениальным учёным Альбертом Эйнштейном в 1905 году.

Ученый рассказал тогда о частном случае своей разработки.

Сегодня это принято называть Специальной теорией относительности или СТО. В СТО изучаются физические принципы равномерного и прямолинейного движения.

В частности, так перемещается свет, если на его пути нет препятствий, ему и посвящено многое в этой теории.

В основе СТО Эйнштейн заложил два основополагающих принципа:

  1. Принцип относительности. Любые физические законы одинаковы для неподвижных объектов и для тел, движущихся равномерно и прямолинейно.
  2. Скорость света в вакууме одинакова для всех наблюдателей и равна 300 000 км./с.

Теория относительности проверяема на практике, Эйнштейн предъявил доказательства в виде результатов экспериментов.

Рассмотрим принципы на примерах.

  • Представим, что два объекта движутся с неизменными скоростями строго по прямой. Вместо того, чтобы рассматривать их перемещения относительно неподвижной точки Эйнштейн предложил изучать их друг относительно друга. Например, два поезда едут по соседним путям с разными скоростям. В одном сидите Вы, в другом, напротив, — Ваш друг. Вы его видите, и его скорость относительно Вашего взгляда будет зависеть только от разницы скоростей поездов, но не от того как быстро они едут. По крайней мере до тех пор, пока поезда не начнут ускоряться или поворачивать.
  • Теорию относительности любят объяснять на космических примерах. Это происходит потому, то с увеличением скорости и расстояния эффекты усиливаются, особенно учитывая, что свет своей скорости не меняет. Кроме того, в вакууме ничто не препятствует распространению света. Итак, второй принцип провозглашает постоянство скорости света. Если укрепить и включить источник излучения на космическом корабле, то что бы не случилось с самим кораблем: он может перемещаться с большой скоростью, висеть неподвижно или исчезнуть вовсе вместе с излучателем, наблюдатель со станции увидит свет через одинаковых при всех казусах промежуток времени.

Общая теория относительности.

С 1907 по 1916 Эйнштейн занимался созданием Общей теории относительности. В этом разделе физики изучается движение материальных тел вообще, объекты могут ускоряться и менять траектории. Общая теория относительности объединяет в себе учение о пространстве и времени с теорией тяготения, устанавливает между ними зависимости. Также известно другое название: геометрическая теория тяготения. Общая теория относительности опирается на выводы специальной. Математические выкладки в данном случае чрезвычайно сложны.

Попробуем объяснить без формул.

Постулаты Общей теории относительности:

  • среда, в которой рассматриваются объекты и их движение, является четырехмерной;
  • все тела падают с постоянной скоростью.

Перейдем к подробностям.

Итак, в ОТО Эйнштейн использует четыре измерения: обычное трехмерное пространство он дополнил временем. Полученную структуру ученые называют пространственно-временной континуум или пространство — время. Утверждается, что четырехмерные объекты неизменны при движении, мы же способны воспринимать только их трехмерные проекции. То есть, как не гни линейку, увидишь лишь проекции неизвестного 4-мерного тела. Пространственно-временной континуум Эйнштейн считал неделимым.

По поводу тяготения Эйнштейн выдвинул следующий постулат: гравитация является искривлением пространства-времени.

То есть, по Эйнштейну, падение яблока на голову изобретателя является не следствием притяжения, а следствием присутствия массы-энергии в пострадавшей точке пространства-времени. На плоском примере: возьмем полотно, растянем его на четырех опорах, поместим на него тело, видим вмятину на полотне; более легкие тела, оказавшиеся вблизи первого объекта будут скатываться (не притягиваться) в результате искривления полотна.

Так доказано, что лучи света искривляются в присутствии гравитирующих тел. Также экспериментально подтверждено замедление времени с увеличением высоты. Эйнштейн сделал вывод, что пространство-время искривляется в присутствии массивного тела и гравитационное ускорение — лишь проекция в 3D равномерного движения в 4-х мерном пространстве. А траектория мелких тел, скатывающихся на полотне в сторону более крупного объекта остается прямолинейной для них самих.

В настоящее время ОТО является лидером среди других теорий гравитации и используется на практике инженерами, астрономами и разработчиками спутниковой навигации. Альберт Эйнштейн фактически является великим преобразователем науки и концепции естествознания. Помимо теории относительности он создал теорию броуновского движения, исследовал квантовую теорию света, участвовал в разработке основ квантовой статистики.

Использование материалов сайта разрешено только при условии размещения активной ссылки на источник.

Еще в начале 20-го века была сформулирована теория относительности. Что это такое и кто ее создатель, знает сегодня каждый школьник. Она настолько увлекательна, что ею интересуются даже люди, далекие от науки. В этой статье доступным языком описывается теория относительности: что это такое, каковы ее постулаты и применение.

Говорят, что к Альберту Эйнштейну, ее создателю, прозрение пришло в один миг. Ученый будто бы ехал на трамвае по швейцарскому Берну. Он посмотрел на уличные часы и вдруг осознал, что эти часы остановятся, если трамвай разгонится до скорости света. В этом случае времени бы не стало. Время в теории относительности играет очень важную роль. Один из постулатов, сформулированных Эйнштейном, - разные наблюдатели воспринимают действительность по-разному. Это относится в частности ко времени и расстоянию.

Учет положения наблюдателя

В тот день Альберт понял, что, выражаясь языком науки, описание любого физического явления или события зависит от того, в какой системе отсчета находится наблюдатель. К примеру, если какая-нибудь пассажирка трамвая уронит очки, они упадут по отношению к ней вертикально вниз. Если же посмотреть с позиции стоящего на улице пешехода, то траектория их падения будет соответствовать параболе, так как трамвай движется и одновременно падают очки. Таким образом, система отсчета у каждого своя. Предлагаем подробнее рассмотреть основные постулаты теории относительности.

Закон распределенного движения и принцип относительности

Несмотря на то что при смене систем отсчета описания событий меняются, существуют и универсальные вещи, которые остаются неизменными. Для того чтобы понять это, нужно задаться вопросом не падения очков, а закона природы, который вызывает это падение. Для любого наблюдателя, независимо от того, в движущейся или неподвижной системе координат он находится, ответ на него остается неизменным. Этот закон называется законом распределенного движения. Он одинаково действует как в трамвае, так и на улице. Иными словами, если описание событий всегда зависит от того, кто их наблюдает, то это не относится к законам природы. Они являются, как принято выражаться на научном языке, инвариантными. Вот в этом и состоит принцип относительности.

Две теории Эйнштейна

Данный принцип, как и любую другую гипотезу, необходимо было сначала проверить, соотнеся его с природными явлениями, действующими в нашей реальности. Эйнштейн вывел 2 теории из принципа относительности. Хотя они и родственные, но считаются отдельными.

Частная, или специальная, теория относительности (СТО) основывается на положении о том, что для всевозможных систем отсчета, скорость движения которых постоянна, законы природы остаются одними и теми же. Общая теория относительности (ОТО) данный принцип распространяет на любые системы отсчета, в том числе и те, которые движутся с ускорением. В 1905 году А. Эйнштейн опубликовал первую теорию. Вторую, более сложную в плане математического аппарата, завершил к 1916 году. Создание теории относительности, как СТО, так и ОТО, стало важным этапом в развитии физики. Остановимся подробнее на каждой из них.

Специальная теория относительности

Что это такое, в чем ее суть? Давайте ответим на этот вопрос. Именно этой теорией предсказывается множество парадоксальных эффектов, противоречащих нашим интуитивным представлениям о том, как устроен мир. Речь идет о тех эффектах, которые наблюдаются тогда, когда скорость движения приближается к скорости света. Наиболее известным среди них является эффект замедления времени (хода часов). Часы, которые движутся относительно наблюдателя, для него идут медленнее, нежели те, которые находятся у него в руках.

В системе координат при движении со скоростью, приближенной к скорости света, время растягивается относительно наблюдателя, а длина объектов (пространственная протяженность), напротив, сжимается вдоль оси направления этого движения. Данный эффект ученые называют сокращением Лоренца-Фицджеральда. Еще в 1889 году его описал Джордж Фицджеральд, итальянский физик. А в 1892 году Хендрик Лоренц, нидерландец, дополнил его. Этот эффект объясняет отрицательный результат, который дает опыт Майкельсона-Морли, в котором скорость движения нашей планеты в космическом пространстве определяется замером "эфирного ветра". Таковы основные постулаты теории относительности (специальной). Эйнштейн дополнил эти преобразования массы, сделанной по аналогии. Согласно ей, по мере того, как скорость тела приближается к скорости света, масса тела увеличивается. Например, если скорость составит 260 тыс. км/с, то есть 87% от скорости света, с точки зрения наблюдателя, который находится в покоящейся системе отсчета, масса объекта удвоится.

Подтверждения СТО

Все эти положения, как бы они ни противоречили здравому смыслу, со времени Эйнштейна находят прямое и полное подтверждение во множестве экспериментов. Один из них провели ученые Мичиганского университета. Этим любопытным опытом подтверждается теория относительности в физике. Исследователи поместили на борт авиалайнера, который регулярно совершал трансатлантические рейсы, сверхточные Каждый раз после возвращения его в аэропорт показания этих часов сверялись с контрольными. Оказалось, что часы на самолете каждый раз все больше отставали от контрольных. Конечно, речь шла лишь о незначительных цифрах, долях секунды, но сам факт весьма показателен.

Последние полвека исследователи изучают элементарные частицы на ускорителях - огромных аппаратных комплексах. В них пучки электронов или протонов, то есть заряженных разгоняются до тех пор, пока их скорости не приближаются к скорости света. После этого ими обстреливаются ядерные мишени. В данных опытах нужно учитывать то, что масса частиц увеличивается, в противном случае результаты эксперимента не поддаются интерпретации. В этом отношении СТО уже давно не просто гипотетическая теория. Она стала одним из инструментов, которые используются в прикладной инженерии, наравне с ньютоновскими законами механики. Принципы теории относительности нашли большое практическое применение в наши дни.

СТО и законы Ньютона

Кстати, говоря о (портрет этого ученого представлен выше), следует сказать, что специальная теория относительности, которая, казалось бы, им противоречит, в действительности воспроизводит уравнения законов Ньютона практически в точности, если ее использовать для описания тел, скорость движения которых намного меньше скорости света. Другими словами, если применяется специальная теория относительности, физика Ньютона вовсе не отменяется. Эта теория, напротив, дополняет и расширяет ее.

Скорость света - универсальная константа

Используя принцип относительности, можно понять, почему в данной модели строения мира очень важную роль играет именно скорость света, а не что-то еще. Этим вопросом задаются те, кто только начинает знакомство с физикой. Скорость света является универсальной константой благодаря тому, что она определена в качестве таковой естественнонаучным законом (подробнее об этом можно узнать, изучив уравнения Максвелла). Скорость света в вакууме, в силу действия принципа относительности, в любой системе отсчета является одинаковой. Можно подумать, что это противоречит здравому смыслу. Выходит, что до наблюдателя одновременно доходит свет как от неподвижного источника, так и от движущегося (независимо от того, с какой скоростью он движется). Однако это не так. Скорости света, благодаря особой ее роли, отводится центральное место не только в специальной, но и в ОТО. Расскажем и о ней.

Общая теория относительности

Она используется, как мы уже говорили, для всех систем отсчета, не обязательно тех, скорость движения которых относительно друг друга является постоянной. Математически эта теория выглядит намного сложнее, нежели специальная. Этим и объясняется то, что между их публикациями прошло 11 лет. ОТО включает в себя специальную в качестве частного случая. Следовательно, законы Ньютона также входят в нее. Однако ОТО идет намного дальше ее предшественниц. К примеру, в ней по-новому объясняется гравитация.

Четвертое измерение

Благодаря ОТО мир становится четырехмерным: время добавляется к трем пространственным измерениям. Все они неразрывны, следовательно, нужно говорить уже не о пространственном расстоянии, существующем в трехмерном мире между двумя объектами. Речь теперь идет о простанственно-временных интервалах между различными событиями, объединяющими как пространственную, так и временную удаленность их друг от друга. Другими словами, время и пространство в теории относительности рассматриваются как некий четырехмерный континуум. Его можно определить как пространство-время. В данном континууме те наблюдатели, которые движутся относительно друг друга, будут иметь разные мнения даже о том, одновременно ли произошли два каких-либо события, или же одно из них предшествовало другому. Однако причинно-следственные связи при этом не нарушаются. Другими словами, существования такой системы координат, где два события происходят в разной последовательности и не одновременно, не допускает даже ОТО.

ОТО и закон всемирного тяготения

Согласно закону всемирного тяготения, открытому Ньютоном, сила взаимного притяжения существует во Вселенной между любыми двумя телами. Земля с этой позиции вращается вокруг Солнца, так как между ними имеются силы взаимного притяжения. Тем не менее, ОТО заставляет взглянуть с другой стороны на это явление. Гравитация, согласно данной теории, - следствие "искривления" (деформации) пространства-времени, которое наблюдается под воздействием массы. Чем тело тяжелее (в нашем примере, Солнце), тем больше "прогибается" под ним пространство-время. Соответственно, его гравитационное поле тем сильнее.

Для того чтобы лучше понять суть теории относительности, обратимся к сравнению. Земля, согласно ОТО, вращается вокруг Солнца, как маленький шарик, который катится вокруг конуса воронки, созданной в результате "продавливания" Солнцем пространства-времени. А то, что мы привыкли считать силой тяжести, является на самом деле внешним проявлением данного искривления, а не силой, в понимании Ньютона. Лучшего объяснения феномена гравитации, чем предложенное в ОТО, на сегодняшний день не найдено.

Способы проверки ОТО

Отметим, что ОТО проверить непросто, так как ее результаты в лабораторных условиях почти соответствуют закону всемирного тяготения. Однако ученые все-таки провели ряд важных экспериментов. Их результаты позволяют сделать вывод о том, что теория Эйнштейна является подтвержденной. ОТО, кроме того, помогает объяснить различные явления, наблюдаемые в космосе. Это, например, небольшие отклонения Меркурия от своей стационарной орбиты. С точки зрения ньютоновской классической механики их нельзя объяснить. Это также то, почему электромагнитное излучение, исходящее от далеких звезд, искривляется при прохождении его вблизи от Солнца.

Результаты, предсказанные ОТО, на самом деле существенно отличаются от тех, которые дают законы Ньютона (портрет его представлен выше), лишь тогда, когда присутствуют сверхсильные гравитационные поля. Следовательно, для полноценной проверки ОТО необходимы либо очень точные измерения объектов огромной массы, либо черные дыры, поскольку наши привычные представления по отношению к ним неприменимы. Поэтому разработка экспериментальных способов проверки этой теории является одной из главных задач современной экспериментальной физики.

Умы многих ученых, да и далеких от науки людей занимает созданная Эйнштейном теория относительности. Что это такое, мы вкратце рассказали. Эта теория переворачивает наши привычные представления о мире, поэтому интерес к ней до сих пор не угасает.

СТО, также известная как частная теория относительности является проработанной описательной моделью для отношений пространства-времени, движения и законов механики, созданная в 1905 году лауреатом Нобелевской премии Альбертом Эйнштейном.

Поступая на отделение теоретической физики Мюнхенского университета, Макс Планк обратился за советом к профессору Филиппу фон Жолли, руководившему в тот момент кафедрой математики этого университета. На что он получил совет: «в этой области почти всё уже открыто, и всё, что остаётся – заделать некоторые не очень важные проблемы». Юный Планк ответил, что он не хочет открывать новые вещи, а только хочет понять и систематизировать уже известные знания. В итоге из одной такой «не очень важной проблемы» впоследствии возникла квантовая теория, а из другой – теория относительности, за которые Макс Планк и Альберт Эйнштейн получили нобелевские премии по физике.

В отличие от многих других теорий, полагавшихся на физические эксперименты, теория Эйнштейна практически полностью была основана на его мысленных экспериментах и только впоследствии была подтверждена на практике. Так ещё в 1895 году (в возрасте всего 16 лет) он задумался о том, что будет, если двигаться параллельно лучу света с его скоростью? В такой ситуации получалось, что для стороннего наблюдателя частицы света должны были колебаться вокруг одной точки, что противоречило уравнениям Максвелла и принципу относительности (который гласил, что физические законы не зависят от места где вы находитесь и скорости с которой вы движетесь). Таким образом юный Эйнштейн пришёл к выводу, что скорость света должна быть недостижима для материального тела, а в основу будущей теории был заложен первый кирпичик.

Следующий эксперимент был проведён им в 1905 году и заключался в том, что на концах движущегося поезда находятся два импульсных источника света которые зажигаются в одно время. Для стороннего наблюдателя, мимо которого проходит поезд, оба этих события происходят одновременно, однако для наблюдателя, находящегося в центре поезда эти события будут казаться произошедшими в разное время, так как вспышка света из начала вагона придёт раньше, чем из его конца (в следствии постоянности скорости света).

Из этого он сделал весьма смелый и далеко идущий вывод, что одновременность событий является относительной. Полученные на основе этих экспериментов расчёты он опубликовал в работе «Об электродинамике движущихся тел». При этом для движущегося наблюдателя один из этих импульсов будет иметь большую энергию нежели другой. Для того чтобы в такой ситуации не нарушался закон сохранения импульса при переходе от одной инерциальной системы отсчёта к другой необходимо было чтобы объект одновременно с потерей энергии должен был терять и массу. Таким образом Эйнштейн пришёл к формуле характеризующую взаимосвязь массы и энергии E=mc 2 – являющейся, пожалуй, самой известной физической формулой на данный момент. Результаты этого эксперимента были опубликованы им позднее в том же году.

Основные постулаты

Постоянство скорости света – к 1907 году были произведены эксперименты по измерению с точностью ±30 км/с (что было больше орбитальной скорости Земли) не обнаружившие её изменения в ходе года. Это стало первым доказательством неизменности скорости света, которое в последствии было подтверждено множеством других экспериментов, как экспериментаторами на земле, так и автоматическими аппаратами в космосе.

Принцип относительности – этот принцип определяет неизменность физических законов в любой точке пространства и в любой инерциальной системе отсчёта. То есть в независимости от того движетесь ли вы со скоростью около 30 км/с по орбите Солнца вместе с Землёй или в космическом корабле далеко за её пределами – ставя физический эксперимент вы всегда будете приходить к одним и тем же результатам (если ваш корабль в это время не ускоряется или замедляется). Этот принцип подтверждался всеми экспериментами на Земле, и Эйнштейн разумно счёл этот принцип верным и для всей остальной Вселенной.

Следствия

Путём расчётов на основе этих двух постулатов Эйнштейн пришёл к выводу, что время для движущегося в корабле наблюдателя должно замедляться с увеличением скорости, а сам он вместе с кораблём должен сокращаться в размерах в направлении движения (для того чтобы скомпенсировать тем самым эффекты от движения и соблюсти принцип относительности). Из условия конечности скорости для материального тела вытекало также что правило сложения скоростей (имевшее в механике Ньютона простой арифметический вид) должно быть заменено более сложными преобразованиями Лоренца – в таком случае даже если мы сложим две скорости в 99% от скорости света мы получим 99,995% от этой скорости, но не превысим её.

Статус теории

Так как формирование из частной теории её общей версии у Эйнштейна заняло только 11 лет, экспериментов для подтверждения непосредственно СТО не проводилось. Однако в том же году, когда была опубликована Эйнштейн также опубликовал свои расчёты, объяснявшие смещение перигелия Меркурия с точностью до долей процентов, без необходимости введения новых констант и других допущений, которые требовались другим теориям, объяснявшим этот процесс. С тех пор правильность ОТО была подтверждена экспериментально с точностью до 10 -20 , а на её основе было сделано множество открытий, что однозначно доказывает правильность этой теории.

Первенство в открытии

Когда Эйнштейн опубликовал свои первые работы по специальной теории относительности и приступил к написанию её общей версии, другими учёными уже была открыта значительная часть формул и идей, заложенных в основе этой теории. Так скажем преобразования Лоренца в общем виде были впервые получены Пуанкаре в 1900 году (за 5 лет до Эйнштейна) и были названы так в честь Хендрика Лоренца получившего приближённую версию этих преобразований, хотя даже в этой роли его опередил Вольдемар Фогт.

К этому моменту жизни Эйнштейна его плохо скрываемое презрение к немецким корням, авторитарным методам обучения в Германии уже сыграло свою роль, и его выгнали из средней школы, поэтому он переехал в Цюрих в надежде на поступление в Швейцарский федеральный технологический институт (ETH).

Но сперва Эйнштейн решил провести год подготовки в школе в соседнем городе Аарау. В этом месте он вскоре обнаружил, что интересуется тем, каково это - бежать рядом с лучом света.

Эйнштейн уже узнал в физическом классе, что такое луч света: множество колеблющихся электрических и магнитных полей, движущихся на скорости 300 000 километров в секунду, измеренной скорости света. Если он бежал бы рядом с такой же скоростью, осознал Эйнштейн, он мог бы увидеть множество колеблющихся электрических и магнитных полей рядом с ним, словно застывшие в пространстве.

Но это было невозможно. Во-первых, стационарные поля нарушали бы уравнения Максвелла, математические законы, в которых было заложено все, что физики знали об электричестве, магнетизме и свете. Эти законы были (и остаются) довольно строгими: любые волны в этих полях должны двигаться со скоростью света и не могут стоять на месте, без исключений.

Хуже того, стационарные поля не вязались с принципом относительности, который был известен физикам со времен Галилея и Ньютона в 17 веке. По сути, принцип относительности говорит, что законы физики не могут зависеть от того, как быстро вы движетесь: вы можете измерить лишь скорость одного объекта относительно другого.

Но когда Эйнштейн применил этот принцип к своему мысленному эксперименту, возникло противоречие: относительность диктовала, что все, что он мог увидеть, двигаясь рядом с лучом света, включая стационарные поля, должно быть чем-то приземленным, что физики могут создать в лаборатории. Но такого никто никогда не наблюдал.

Эта проблема будет волновать Эйнштейна еще 10 лет, на протяжении всего его пути обучения и работы в ETH и движения к столице Швейцарии Берну, где он станет экзаменатором в швейцарском патентном бюро. Именно там он разрешит парадокс раз и навсегда.

1904 год: измерение света с движущегося поезда

Это было непросто. Эйнштейн пробовал любое решение, которое приходило ему в голову, но ничего не работало. Почти отчаявшись, он начал раздумывать, но простым, однако радикальным решением. Возможно, уравнения Максвелла работают для всего, подумал он, но скорость света всегда была постоянной.

Другими словами, когда вы видите пролетающий пучок света, не имеет значения, будет ли его источник двигаться к вам, от вас, в сторону или еще куда-нибудь, и не имеет значения, насколько быстро движется его источник. Скорость света, которую вы измерите, всегда будет 300 000 километров в секунду. Помимо всего прочего, это означало, что Эйнштейн никогда не увидит стационарных колеблющихся полей, поскольку никогда не сможет поймать луч света.

Это был единственный способ, который увидел Эйнштейн, чтобы примирить уравнения Максвелла с принципом относительности. На первый взгляд, впрочем, это решение имело собственный роковой недостаток. Позже он объяснил его другим мысленным экспериментом: представьте себе луч, который запускается вдоль железнодорожной насыпи, в то время как поезд проходит мимо в том же направлении со скоростью, скажем, 3000 километров в секунду.

Некто стоящий возле насыпи должен будет измерить скорость светового луча и получить стандартное число в 300 000 километров в секунду. Но кто-то на поезде будет видеть свет, движущийся со скоростью 297 000 километров в секунду. Если скорость света непостоянна, уравнение Максвелла внутри вагона должно выглядеть иначе, заключил Эйнштейн, и тогда принцип относительности будет нарушен.

Это кажущееся противоречие заставило Эйнштейна задуматься почти на год. Но затем, в одно прекрасное утро в мае 1905 года, он шел на работу со своим лучшим другом Мишелем Бессо, инженером, которого он знал со студенческих лет в Цюрихе. Двое мужчин говорили о дилемме Эйнштейна, как и всегда. И вдруг Эйнштейн увидел решение. Он работал над ним всю ночь, и когда следующим утром они встретились, Эйнштейн сказал Бессо: «Спасибо. Я полностью решил проблему».

Май 1905 года: молния бьет в движущийся поезд

Откровение Эйнштейна состояло в том, что наблюдатели в относительном движении воспринимают время по-разному: вполне возможно, что два события будут происходить одновременно с точки зрения одного наблюдателя, но в разное время с точки зрения другого. И оба наблюдателя будут правы.

Позднее Эйнштейн проиллюстрировал свою точку зрения другим мысленным экспериментом. Представьте, что рядом с железной дорогой снова стоит наблюдатель и мимо него проносится поезд. В тот момент, когда центральная точка поезда проходит мимо наблюдателя, в каждый конец поезда бьет молния. Поскольку молнии бьют на одном расстоянии от наблюдателя, их свет попадает в его глаза одновременно. Справедливо будет сказать, что молнии бьют одновременно.

Между тем ровно в центре поезда сидит другой наблюдатель. С его точки зрения свет от двух ударов молний проходит одинаковое расстояние и скорость света будет одинаковой в любом направлении. Но поскольку поезд движется, свет, приходящий от задней молнии, должен пройти большее расстояние, поэтому попадает к наблюдателю несколькими мгновениями позже, чем свет из начала. Поскольку импульсы света приходят в разное время, можно заключить, что удары молнии не одновременны - один происходит быстрее.

Эйнштейн понял, что относительна как раз эта одновременность. И как только вы это признаете, странные эффекты, которые мы сейчас связываем с относительностью, разрешаются при помощи простой алгебры.

Эйнштейн лихорадочно записал свои мысли и отправил свою работу для публикации. Названием стало «Об электродинамике движущихся тел», и в нем отразилась попытка Эйнштейна увязать уравнения Максвелла с принципом относительности. Бессо была вынесена отдельная благодарность.

Сентябрь 1905 года: масса и энергия

Эта первая работа, впрочем, не стала последней. Эйнштейн был одержим относительностью до лета 1905 года, а в сентябре отправил вторую статью для публикации, уже вдогонку, задним числом.

Она была основана еще на одном мысленном эксперименте. Представьте объект в состоянии покоя, говорил он. Теперь представьте, что тот одновременно испускает два идентичных импульса света в противоположных направлениях. Объект будет оставаться на месте, но поскольку каждый импульс уносит определенное количество энергии, заключенная в объекте энергия будет уменьшаться.

Теперь, писал Эйнштейн, как будет выглядеть этот процесс для движущегося наблюдателя? С его точки зрения, объект просто будет продолжать двигаться по прямой линии, в то время как два импульса будут улетать. Но даже если скорость двух импульсов будет оставаться прежней - скоростью света - их энергии будут разными. Импульс, который движется вперед по направлению движения, будет иметь более высокую энергию, чем тот, что движется в обратном направлении.

Добавив немного алгебры, Эйнштейн показал, что для того, чтобы все это было последовательным, объект должен не только терять энергию при отправке световых импульсов, но и массу. Или же масса и энергия должны быть взаимозаменяемы. Эйнштейн записал уравнение, которое их связывает. И оно стало самым знаменитым уравнением в истории науки: E = mc 2 .

Введение

2. Общая теория относительности Эйнштейна

Заключение

Список использованных источников


Введение

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Впервые принцип относительности был установлен Галилеем, но окончательную формулировку получил лишь в механике Ньютона.

Принцип относительности означает, что во всех инерциальных системах все механические процессы происходят одинаковым образом.

Когда в естествознании господствовала механистическая картина мира, принцип относительности не подвергался никакому сомнению. Положение резко изменилось, когда физики вплотную приступили к изучению электрических, магнитных и оптических явлений. Для физиков стала очевидной недостаточность классической механики для описания явлений природы. Возник вопрос: выполняется ли принцип относительности и для электромагнитных явлений?

Описывая ход своих рассуждений, Альберт Эйнштейн указывает на два аргумента, которые свидетельствовали в пользу всеобщности принципа относительности:

Этот принцип с большой точностью выполняется в механике, и поэтому можно надеяться, что он окажется правильным и в электродинамике.

Если инерциальные системы неравноценны для описания явлений природы, то разумно предположить, что законы природы проще всего описываются лишь в одной инерциальной системе.

Например, рассматривается движение Земли вокруг Солнца со скоростью 30 километров в секунду. Если бы принцип относительности в данном случае не выполнялся, то законы движения тел зависели бы от направления и пространственной ориентировки Земли. Ничего подобного, т.е. физической неравноценности различных направлений, не обнаружено. Однако здесь возникает кажущаяся несовместимость принципа относительности с хорошо установленным принципом постоянства скорости света в пустоте (300 000 км/с).

Возникает дилемма: отказ либо от принципа постоянства скорости света, либо от принципа относительности. Первый принцип установлен настолько точно и однозначно, что отказ от него был бы явно неоправданным; не меньшие трудности возникают и при отрицании принципа относительности в области электромагнитных процессов. В действительности, как показал Эйнштейн:

«Закон распространения света и принцип относительности совместимы».

Кажущееся противоречие принципа относительности закону постоянства скорости света возникает потому, что классическая механика, по заявлению Эйнштейна, опиралась «на две ничем не оправданные гипотезы»: промежуток времени между двумя событиями не зависит от состояния движения тела отсчета и пространственное расстояние между двумя точками твердого тела не зависит от состояния движения тела отсчета. В ходе разработки своей теории ему пришлось отказаться: от галилеевских преобразований и принять преобразования Лоренца; от ньютоновского понятия абсолютного пространства и определения движения тела относительно этого абсолютного пространства.

Каждое движение тела происходит относительно определенного тела отсчета и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат. Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

Новые понятия и принципы теории относительности существенно изменили физические и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет.

Все вышесказанное обосновывает актуальность выбранной темы.

Цель данной работы всестороннее изучение и анализ создания специальной и общей теорий относительности Альбертом Эйнштейном.

Работа состоит из введения, двух частей, заключения и списка использованной литературы. Общий объем работы 16 страниц.

1. Специальная теория относительности Эйнштейна

В 1905 году Альберт Эйнштейн, исходя из невозможности обнаружить абсолютное движение, сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея на любые физические явления. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково. Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Глубокий анализ этих постулатов показывает, что они противоречат представлениям о пространстве и времени, принятым в механике Ньютона и отраженным в преобразованиях Галилея. Действительно, согласно принципу 1 все законы природы, в том числе законы механики и электродинамики, должны быть инвариантны по отношению к одним и тем же преобразованиям координат и времени, осуществляемым при переходе от одной системы отсчета к другой. Уравнения Ньютона этому требованию удовлетворяют, а вот уравнения электродинамики Максвелла – нет, т.е. оказываются не инвариантными. Это обстоятельство привело Эйнштейна к выводу о том, что уравнения Ньютона нуждаются в уточнении, в результате которого как уравнения механики, так и уравнения электродинамики оказались бы инвариантными по отношению к одним и тем же преобразованиям. Необходимое видоизменение законов механики и было осуществлено Эйнштейном. В результате возникла механика, согласующаяся с принципом относительности Эйнштейна – релятивистская механика.

Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения. Классическое сложение скоростей неприменимо для распространения электромагнитных волн, света. Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света.

Скорость света является предельной скоростью распространения материальных воздействий. Она не может складываться ни с какой скоростью и для всех инерциальных систем оказывается постоянной. Все движущиеся тела на Земле по отношению к скорости света имеют скорость, равную нулю. И в самом деле, скорость звука всего лишь 340 м/с. Это неподвижность по сравнению со скоростью света.

Из этих двух принципов - постоянства скорости света и расширенного принципа относительности Галилея - математически следуют все положения специальной теории относительности. Если скорость света постоянна для всех инерциальных систем, а они все равноправны, то физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Так, длина тела в движущейся системе будет наименьшей по отношению к покоящейся. По формуле:

где /" - длина тела в движущейся системе со скоростью V по отношению к неподвижной системе; / - длина тела в покоящейся системе.

Для промежутка же времени, длительности какого-либо процесса - наоборот. Время будет как бы растягиваться, течь медленнее в движущейся системе по отношению к неподвижной, в которой этот процесс будет более быстрым. По формуле:


Напомним, что эффекты специальной теории относительности будут обнаруживаться при скоростях, близких к световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики.

Рис.1. Эксперимент «Поезд Эйнштейна»

Эйнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света (рис.1).